Ceramic laser materials

The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material — polycrystalline ceramic — can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

[1]  R. Monchamp The distribution coefficient on neodymium and lutetium in Czochralski grown Y3Al5O12 , 1971 .

[2]  T. Taira,et al.  Diode-Pumped Nd:YAG Ceramics Lasers , 1998 .

[3]  Akio Ikesue,et al.  Fabrication and Optical Properties of High‐Performance Polycrystalline Nd:YAG Ceramics for Solid‐State Lasers , 1995 .

[4]  Tuan Vo-Dinh,et al.  Biomedical Photonics Handbook , 2003 .

[5]  J. Ready LIA handbook of Laser materials processing , 2001 .

[6]  R. Gentilman,et al.  Domestically produced ceramic YAG laser gain material for high power SSLs , 2007, SPIE Defense + Commercial Sensing.

[7]  Yoichi Sato,et al.  Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics , 2004 .

[8]  J. Geusic,et al.  LASER OSCILLATIONS IN Nd‐DOPED YTTRIUM ALUMINUM, YTTRIUM GALLIUM AND GADOLINIUM GARNETS , 1964 .

[9]  M. Niemz Laser-Tissue Interactions , 1996 .

[10]  Jie Song,et al.  High-Power Nd:Y3Al5O12 Ceramic Laser , 2000 .

[11]  Shunsuke Hosokawa,et al.  Diode-pumped mode-locked Yb(3+):Lu(2)O(3) ceramic laser. , 2003, Optics express.

[12]  W. C. Edwards,et al.  Recent Progress in the Development of Neodymium-Doped Ceramic Yttria , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  T. Yanagitani,et al.  Induced emission cross section of Nd:Y3Al5O12 ceramics , 1990 .

[14]  Yoichi Sato,et al.  Spectral Parameters of Nd3+-ion in the Polycrystalline Solid-Solution Composed of Y3Al5O12 and Y3Sc2Al3O12 , 2003 .

[15]  Christhard Deter,et al.  High-resolution scanning laser projection display with diode-pumped solid state lasers , 2000, Electronic Imaging.

[16]  J. A. Osmer,et al.  Habit changes of Y3Al5O12 and Y3Ga5O12 grown from a PbO-PbF2 flux , 1969 .

[17]  B. Cockayne,et al.  Facetting and optical perfection in Czochralski grown garnets and ruby , 1969 .

[18]  E. Kannatey-Asibu Principles of Laser Materials Processing , 2009 .

[19]  Stefano Atzeni,et al.  The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter , 2004 .

[20]  Medical applications of lasers , 2002 .

[21]  H. V. Dijk,et al.  Translucent Y3Al5O12 ceramics , 1984 .

[22]  S. E. Hatch,et al.  HOT‐PRESSED POLYCRYSTALLINE CaF2:Dy2+ LASER , 1964 .

[23]  C. Greskovich,et al.  Improved polycrystalline ceramic lasers , 1974 .

[24]  Yan Lin Aung,et al.  Synthesis and Performance of Advanced Ceramic Lasers , 2006 .

[25]  Gary L. Messing,et al.  Solid‐State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics , 2006 .

[26]  Ronald W. Waynant,et al.  Lasers in Medicine , 2001 .

[27]  Carmen A. Puliafito,et al.  Lasers in ophthalmology , 1981, Bulletins et memoires de la Societe francaise d'ophtalmologie.

[28]  C. Mulder Translucent Y3Al5O12 ceramics: Electron microscopy characterization , 1985 .

[29]  T. Fukuchi,et al.  Laser Remote Sensing , 2005 .

[30]  Ken-ichi Ueda,et al.  Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials , 2002 .

[31]  Kunio Yoshida,et al.  Synthesis of Transparent Nd-doped HfO2-Y2O3 Ceramics Using HIP , 1996 .

[32]  A. Ikesue,et al.  Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[33]  P. Hering,et al.  Laser in Environmental and Life Sciences , 2004 .

[34]  R. Coble Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts , 1961 .

[35]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[36]  K Mima,et al.  Laser driven inertial fusion energy: present and prospective , 2004 .

[37]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[38]  T. Maiman Optical and Microwave-Optical Experiments in Ruby , 1960 .

[39]  Yan Lin Aung,et al.  PROGRESS IN CERAMIC LASERS , 2006 .

[40]  Michael Bass,et al.  Laser Materials Processing , 2018 .

[41]  N. Dahotre,et al.  Laser Fabrication and Machining of Materials , 2007 .

[42]  T. Sekino,et al.  Progress in the YAG Crystal Growth Techniqe for Solid State Lasers , 1993 .

[43]  Michael H. Key,et al.  Fast track to fusion energy , 2001, Nature.

[44]  J. Baumard,et al.  Influence of the powder preparation on the sintering of Yb-doped Sc2O3 transparent ceramics , 2009 .

[45]  V. Lupei Ceramic laser materials and the prospect for high power lasers , 2009 .

[46]  Yoichi Sato,et al.  Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics , 2000 .

[47]  H. Liu,et al.  High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice. , 2008, Optics letters.

[48]  Günter Huber,et al.  Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature , 1988 .