The cyclic peptide labaditin does not alter the outer membrane integrity of Salmonella enterica serovar Typhimurium

[1]  S. Enami,et al.  In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy. , 2017, The journal of physical chemistry. B.

[2]  Michael R Hamblin,et al.  Advances in antimicrobial photodynamic inactivation at the nanoscale , 2017, Nanophotonics.

[3]  L. Caseli,et al.  Interaction of non-aqueous dispersions of silver nanoparticles with cellular membrane models. , 2017, Journal of colloid and interface science.

[4]  C. Verma,et al.  Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design , 2017, Front. Neurosci..

[5]  G. Maróti,et al.  Comparative Analysis of the Bacterial Membrane Disruption Effect of Two Natural Plant Antimicrobial Peptides , 2017, Front. Microbiol..

[6]  M. Mahlapuu,et al.  Antimicrobial Peptides: An Emerging Category of Therapeutic Agents , 2016, Front. Cell. Infect. Microbiol..

[7]  D. Volpati,et al.  The importance of cyclic structure for Labaditin on its antimicrobial activity against Staphylococcus aureus. , 2016, Colloids and surfaces. B, Biointerfaces.

[8]  M. Kuehn,et al.  Outer Membrane Vesicle Production Facilitates LPS Remodeling and Outer Membrane Maintenance in Salmonella during Environmental Transitions , 2016, mBio.

[9]  Haohao Dong,et al.  Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria , 2016, Scientific Reports.

[10]  I. Autenrieth,et al.  Structure and function: Lipid A modifications in commensals and pathogens. , 2016, International journal of medical microbiology : IJMM.

[11]  S. Andrews,et al.  Crosstalk between the lipopolysaccharide and phospholipid pathways during outer membrane biogenesis in Escherichia coli , 2016, Proceedings of the National Academy of Sciences.

[12]  H. Nikaido,et al.  Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin. , 2015, Biophysical journal.

[13]  Yue Sun,et al.  Interactions between chensinin‐1, a natural antimicrobial peptide derived from Rana chensinensis, and lipopolysaccharide , 2015, Biopolymers.

[14]  Samuel I. Miller,et al.  S. Typhimurium strategies to resist killing by cationic antimicrobial peptides. , 2015, Biochimica et biophysica acta.

[15]  S Gnanakaran,et al.  Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. , 2015, ACS infectious diseases.

[16]  Juneyoung Lee,et al.  Antimicrobial Peptides (AMPs) with Dual Mechanisms: Membrane Disruption and Apoptosis. , 2015, Journal of microbiology and biotechnology.

[17]  S. Fang,et al.  Antibacterial Mechanisms of Polymyxin and Bacterial Resistance , 2015, BioMed research international.

[18]  P. Ciancaglini,et al.  Interaction of cyclic and linear Labaditin peptides with anionic and zwitterionic micelles. , 2015, Journal of colloid and interface science.

[19]  M. Aguilar,et al.  Real-time Measurement of Membrane Conformational States Induced by Antimicrobial Peptides: Balance Between Recovery and Lysis , 2014, Scientific Reports.

[20]  G. Grassl,et al.  Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ , 2014, Front. Microbiol..

[21]  M. Friedman,et al.  Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers , 2014, Molecules.

[22]  D. Alves,et al.  Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces , 2014, Biofouling.

[23]  B. Mattei,et al.  Structure-activity relationship of the antimicrobial peptide gomesin: the role of peptide hydrophobicity in its interaction with model membranes. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[24]  Ildinete Silva-Pereira,et al.  Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance , 2013, Front. Microbiol..

[25]  B. Bonev,et al.  Interactions of lipopolysaccharide with lipid membranes, raft models - a solid state NMR study. , 2013, Biochimica et biophysica acta.

[26]  A. Lomize,et al.  Antimicrobial Action of the Cyclic Peptide Bactenecin on Burkholderia pseudomallei Correlates with Efficient Membrane Permeabilization , 2013, PLoS neglected tropical diseases.

[27]  E. Cilli,et al.  Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Cândida albicans cells , 2013, Amino Acids.

[28]  A. Falanga,et al.  Microbe-Host Interactions: Structure and Role of Gram-Negative Bacterial Porins , 2012, Current protein & peptide science.

[29]  H. Won,et al.  Antimicrobial Peptides for Therapeutic Applications: A Review , 2012, Molecules.

[30]  T. van der Poll,et al.  Host–Pathogen Interaction in Invasive Salmonellosis , 2012, PLoS pathogens.

[31]  M. Selsted,et al.  θ-Defensins: Cyclic Peptides with Endless Potential* , 2012, The Journal of Biological Chemistry.

[32]  E. Breukink,et al.  Interaction with Lipid II Induces Conformational Changes in Bovicin HC5 Structure , 2012, Antimicrobial Agents and Chemotherapy.

[33]  Nicholas G. Housden,et al.  Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF , 2010, Proceedings of the National Academy of Sciences.

[34]  C. Toniolo,et al.  Fluctuations and the rate-limiting step of peptide-induced membrane leakage. , 2010, Biophysical journal.

[35]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[36]  B. Korchowiec,et al.  Differentiating oxicam nonsteroidal anti-inflammatory drugs in phosphoglyceride monolayers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[37]  A. Ramamoorthy,et al.  Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. , 2010, Biophysical journal.

[38]  A. Delcour,et al.  Outer membrane permeability and antibiotic resistance. , 2009, Biochimica et biophysica acta.

[39]  M. N. Melo,et al.  Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations , 2009, Nature Reviews Microbiology.

[40]  J. L. Ding,et al.  Interaction of an artificial antimicrobial peptide with lipid membranes. , 2009, Biochimica et biophysica acta.

[41]  R. Epand,et al.  Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). , 2007, Biochimica et biophysica acta.

[42]  G. Pabst,et al.  How lipids influence the mode of action of membrane-active peptides. , 2007, Biochimica et biophysica acta.

[43]  P. Janmey,et al.  Interaction of the Gelsolin-Derived Antibacterial PBP 10 Peptide with Lipid Bilayers and Cell Membranes , 2006, Antimicrobial Agents and Chemotherapy.

[44]  S. Gellman,et al.  Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides , 2006 .

[45]  M. Niederweis,et al.  Mycobacterial porins – new channel proteins in unique outer membranes , 2003, Molecular microbiology.

[46]  T. Ganz Defensins: antimicrobial peptides of innate immunity , 2003, Nature Reviews Immunology.

[47]  Dong-Kuk Lee,et al.  Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. , 2003, Biochemistry.

[48]  J. Vanderleyden,et al.  O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. , 2001, FEMS microbiology reviews.

[49]  L. Joosten,et al.  Lethal Escherichia coli and Salmonella typhimurium endotoxemia is mediated through different pathways , 2001, European journal of immunology.

[50]  J. Gunn Bacterial modification of LPS and resistance to antimicrobial peptides , 2001, Journal of endotoxin research.

[51]  M. Pirrung,et al.  Antibacterial Agents That Target Lipid A Biosynthesis in Gram-negative Bacteria , 2000, The Journal of Biological Chemistry.

[52]  H. Vogel,et al.  Diversity of antimicrobial peptides and their mechanisms of action. , 1999, Biochimica et biophysica acta.

[53]  G. Schwarz,et al.  Polymorphism and interactions of a viral fusion peptide in a compressed lipid monolayer. , 1999, Biophysical journal.

[54]  N. A. Nnalue α-GlcNAc-1→2-α-Glc, the SalmonellaHomologue of a Conserved Lipopolysaccharide Motif in theEnterobacteriaceae, Elicits Broadly Cross-Reactive Antibodies , 1998, Infection and Immunity.

[55]  B. Lindner,et al.  Molecular Mechanisms of Polymyxin B-Membrane Interactions: Direct Correlation Between Surface Charge Density and Self-Promoted Transport , 1998, The Journal of Membrane Biology.

[56]  Y. Kirino,et al.  Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. , 1997, Biochemistry.

[57]  J. Schneider-Mergener,et al.  High Affinity Endotoxin-binding and Neutralizing Peptides Based on the Crystal Structure of Recombinant Limulus Anti-lipopolysaccharide Factor* , 1996, The Journal of Biological Chemistry.

[58]  S. Kosasi,et al.  Labaditin, a novel cyclic decapeptide from the latex of Jatropha multifida L. (Euphorbiaceae) , 1989 .

[59]  S. Fleischer,et al.  Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots , 1970, Lipids.

[60]  G. Ames Lipids of Salmonella typhimurium and Escherichia coli: Structure and Metabolism , 1968, Journal of bacteriology.

[61]  R. C. Macridis A review , 1963 .

[62]  S. Castano,et al.  Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models. , 2014, Biochimica et biophysica acta.

[63]  P. Ciancaglini,et al.  Labaditin, a cyclic peptide with rich biotechnological potential: preliminary toxicological studies and structural changes in water and lipid membrane environment , 2010, Amino Acids.

[64]  R. Epand,et al.  Lipid domains in bacterial membranes and the action of antimicrobial agents. , 2009, Biochimica et biophysica acta.

[65]  S. Gellman,et al.  Role of membrane lipids in the mechanism of bacterial species selective toxicity by two alpha/beta-antimicrobial peptides. , 2006, Biochimica et biophysica acta.

[66]  N. A. Nnalue alpha-GlcNAc-1-->2-alpha-glc, the Salmonella homologue of a conserved lipopolysaccharide motif in the Enterobacteriaceae, elicits broadly cross-reactive antibodies. , 1998, Infection and immunity.

[67]  V. Potter Structure and metabolism , 1960 .