GridMol2 .0: Implementation and application of linear‐scale quantum mechanics methods and molecular visualization

[1]  Philip C. Biggin,et al.  Using the fragment molecular orbital method to investigate agonist–orexin-2 receptor interactions , 2016, Biochemical Society transactions.

[2]  Takeshi Ishikawa,et al.  Development of an Analysis Toolkit, AnalysisFMO, to Visualize Interaction Energies Generated by Fragment Molecular Orbital Calculations. , 2018, Journal of chemical information and modeling.

[3]  Philip S Low,et al.  Ligand-Targeted Drug Delivery. , 2017, Chemical reviews.

[4]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[5]  Xiao He,et al.  Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy. , 2013, The journal of physical chemistry. A.

[6]  Yang Liu,et al.  A new fragment-based approach for calculating electronic excitation energies of large systems. , 2012, The Journal of chemical physics.

[7]  A. Akimov,et al.  Large-Scale Computations in Chemistry: A Bird's Eye View of a Vibrant Field. , 2015, Chemical reviews.

[8]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[9]  Jiali Gao,et al.  Generalized X-Pol Theory and Charge Delocalization States. , 2010, Journal of chemical theory and computation.

[10]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[11]  末永 正彦,et al.  PC GAMESSのための新しい計算化学統合環境 Facio の開発 , 2005 .

[12]  Eric Schwegler,et al.  Fast assembly of the Coulomb matrix: A quantum chemical tree code , 1996 .

[13]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[14]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[15]  Fan Wang,et al.  The Beijing Density Functional (BDF) Program Package: Methodologies and Applications , 2003 .

[16]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[17]  H. Schlegel,et al.  Optimization of equilibrium geometries and transition structures , 1982 .

[18]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[19]  Jennifer L. Knight,et al.  Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. , 2015, Journal of the American Chemical Society.

[20]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix , 1997 .

[21]  Xiao He,et al.  Fragment quantum mechanical calculation of proteins and its applications. , 2014, Accounts of chemical research.

[22]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[23]  Henry Sowizral,et al.  The Java 3D API and Virtual Reality , 1999, IEEE Computer Graphics and Applications.

[24]  Apurba Nandi,et al.  Breaking the bottleneck: Use of molecular tailoring approach for the estimation of binding energies at MP2/CBS limit for large water clusters. , 2016, The Journal of chemical physics.

[25]  John Z. H. Zhang,et al.  Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy , 2003 .

[26]  Xiao He,et al.  The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy. , 2006, The Journal of chemical physics.

[27]  D. Suárez,et al.  Thermochemical Fragment Energy Method for Biomolecules: Application to a Collagen Model Peptide. , 2009, Journal of chemical theory and computation.

[28]  D. Truhlar,et al.  Multilevel X-Pol: a fragment-based method with mixed quantum mechanical representations of different fragments. , 2012, The journal of physical chemistry. B.

[29]  Jan H. Jensen,et al.  FragIt: A Tool to Prepare Input Files for Fragment Based Quantum Chemical Calculations , 2012, PloS one.

[30]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[31]  Xiao He,et al.  A new method for direct calculation of total energy of protein. , 2005, The Journal of chemical physics.

[32]  Dmitri G. Fedorov,et al.  The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications , 2017 .

[33]  K. Morokuma,et al.  Intrinsic reaction coordinate: Calculation, bifurcation, and automated search , 2015 .

[34]  Kent Milfeld,et al.  From Proposal to Production: Lessons Learned Developing the Computational Chemistry Grid Cyberinfrastructure , 2006, Journal of Grid Computing.

[35]  Martin Head-Gordon,et al.  Rotating around the quartic angular momentum barrier in fast multipole method calculations , 1996 .

[36]  J. W. Neidigh,et al.  Designing a 20-residue protein , 2002, Nature Structural Biology.

[37]  Lou Massa,et al.  Kernel energy method illustrated with peptides , 2005 .

[38]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[39]  Christian Ochsenfeld,et al.  Linear scaling exchange gradients for Hartree–Fock and hybrid density functional theory , 2000 .

[40]  K. Kitaura,et al.  Mathematical Formulation of the Fragment Molecular Orbital Method , 2011 .

[41]  Daniel G. A. Smith,et al.  Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. , 2016, The journal of physical chemistry letters.

[42]  Hui Li,et al.  Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation , 2009, J. Comput. Chem..

[43]  Ewa I. Chudyk,et al.  Fragment Molecular Orbital Method Applied to Lead Optimization of Novel Interleukin-2 Inducible T-Cell Kinase (ITK) Inhibitors. , 2016, Journal of medicinal chemistry.

[44]  Calculation of the Binding Energies of Different Types of Hydrogen Bonds Using GGA Density Functional and Its Long-Range, Empirical Dispersion Correction Methods , 2011 .

[45]  K. Kitaura,et al.  Subsystem Analysis for the Fragment Molecular Orbital Method and Its Application to Protein-Ligand Binding in Solution. , 2016, The journal of physical chemistry. A.

[46]  Bin Shen,et al.  GridMol: a grid application for molecular modeling and visualization , 2008, J. Comput. Aided Mol. Des..

[47]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[48]  Xiao He,et al.  Correction: MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions , 2016, Chemical science.

[49]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[50]  B. Chung,et al.  Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation. , 2018, Biomaterials.

[51]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[52]  K. Fukui The path of chemical reactions - the IRC approach , 1981 .

[53]  Spencer R Pruitt,et al.  Fragmentation methods: a route to accurate calculations on large systems. , 2012, Chemical reviews.

[54]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[55]  R. Satchi‐Fainaro,et al.  Enhanced cytotoxicity of a polymer-drug conjugate with triple payload of paclitaxel. , 2009, Bioorganic & medicinal chemistry.

[56]  Kazuo Kitaura,et al.  Exploring chemistry with the fragment molecular orbital method. , 2012, Physical chemistry chemical physics : PCCP.

[57]  John M Herbert,et al.  Fantasy versus reality in fragment-based quantum chemistry. , 2019, The Journal of chemical physics.

[58]  Yuto Komeiji,et al.  Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. , 2014, Physical chemistry chemical physics : PCCP.

[59]  Yutaka Akiyama,et al.  Fragment molecular orbital method: application to polypeptides , 2000 .

[60]  B. Sumpter,et al.  The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. , 2019, Journal of chemical theory and computation.

[61]  Andreas Hansen,et al.  A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. , 2017, Physical chemistry chemical physics : PCCP.

[62]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[63]  Jim Waldo Remote procedure calls and Java Remote Method Invocation , 1998, IEEE Concurr..

[64]  Robert Zaleśny,et al.  Linear-Scaling Techniques in Computational Chemistry and Physics , 2011 .

[65]  Jan H. Jensen,et al.  Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods. , 2010, The journal of physical chemistry. A.

[66]  Shridhar R. Gadre,et al.  Ab initio quality one‐electron properties of large molecules: Development and testing of molecular tailoring approach , 2003, J. Comput. Chem..

[67]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[68]  Xiao He,et al.  Fragment quantum chemical approach to geometry optimization and vibrational spectrum calculation of proteins. , 2016, Physical chemistry chemical physics : PCCP.

[69]  Yuichi Inadomi,et al.  PEACH 4 with ABINIT-MP: a general platform for classical and quantum simulations of biological molecules. , 2004, Computational biology and chemistry.

[70]  Xiao He,et al.  Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method. , 2017, The journal of physical chemistry. A.

[71]  Jiali Gao,et al.  Toward a Molecular Orbital Derived Empirical Potential for Liquid Simulations , 1997 .

[72]  Donald G Truhlar,et al.  X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water. , 2009, Journal of chemical theory and computation.