On the Analysis and Design of Visual Cryptography With Error Correcting Capability

A (<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>) visual cryptographic scheme (VCS) shares a secret image into <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> shadow images that are distributed over <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> involved participants. When <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> participants stack their shadow images, the secret is revealed. The secret image of VCS is a visual secret. Even though black/white dots in shadows suffer from interference by noise, the color may still retain the corresponding darkness with high probability. Therefore, VCS has noise immunity for secret recovery. Hence, it seems that there is no need to design a VCS that is robust to noise interference when transmitting or storing the files of shadow images. However, some VCSs use the permutations of subpixels in shadow images as information to realize multiple decoding options. For such schemes, we absolutely should ensure the correctness of the shadows. In this article, we investigate a VCS with <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-error correcting capability (VCS-<inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>EC). To the best of our knowledge, VCS-<inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>EC is introduced for the first time. Three (<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>)-VCS-<inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>EC schemes are proposed: the separated scheme, the integrated scheme, and the nonsystematic scheme.

[1]  Ching-Nung Yang,et al.  Probabilistic color visual cryptography schemes for black and white secret images , 2020, J. Vis. Commun. Image Represent..

[2]  Ching-Nung Yang,et al.  A combination of color-black-and-white visual cryptography and polynomial based secret image sharing , 2019, J. Vis. Commun. Image Represent..

[3]  Dong Chen,et al.  A (k, n) threshold partial reversible AMBTC-based visual cryptography using one reference image , 2019, J. Vis. Commun. Image Represent..

[4]  Chaoyang Zhang,et al.  Collaborative Visual Cryptography Schemes , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[5]  Zhangjie Fu,et al.  Constructions of general (k, n) reversible AMBTC-based visual cryptography with two decryption options , 2017, J. Vis. Commun. Image Represent..

[6]  Yu-Chi Chen,et al.  Fully Incrementing Visual Cryptography From a Succinct Non-Monotonic Structure , 2017, IEEE Transactions on Information Forensics and Security.

[7]  Kouichi Sakurai,et al.  On the Robustness of Visual Cryptographic Schemes , 2016, IWDW.

[8]  Ching-Nung Yang,et al.  Property Analysis of XOR-Based Visual Cryptography , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  Xiaobo Li,et al.  Probabilistic visual secret sharing schemes for grey-scale images and color images , 2007, Inf. Sci..

[10]  Ja-Chen Lin,et al.  VCPSS: A two-in-one two-decoding-options image sharing method combining visual cryptography (VC) and polynomial-style sharing (PSS) approaches , 2007, Pattern Recognit..

[11]  Mohan S. Kankanhalli,et al.  Progressive color visual cryptography , 2005, J. Electronic Imaging.

[12]  Ching-Nung Yang,et al.  New visual secret sharing schemes using probabilistic method , 2004, Pattern Recognit. Lett..

[13]  Ja-Chen Lin,et al.  Secret image sharing , 2002, Comput. Graph..

[14]  Eric R. Verheul,et al.  Constructions and Properties of k out of n Visual Secret Sharing Schemes , 1997, Des. Codes Cryptogr..

[15]  Stefan Droste,et al.  New Results on Visual Cryptography , 1996, CRYPTO.

[16]  Moni Naor,et al.  Visual Cryptography , 1994, Encyclopedia of Multimedia.

[17]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[18]  Sudhakar M. Reddy,et al.  On Symmetric Error Correcting and All Unidirectional Error Detecting Codes , 1990, IEEE Trans. Computers.

[19]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[20]  Bella Bose,et al.  Theory of Unidirectional Error Correcting/Detecting Codes , 1978, IEEE Transactions on Computers.

[21]  Ching-Nung Yang,et al.  k Out of n Region-Based Progressive Visual Cryptography , 2019, IEEE Trans. Circuits Syst. Video Technol..

[22]  Stelvio Cimato,et al.  Probabilistic Visual Cryptography Schemes , 2006, Comput. J..

[23]  Ching-Nung Yang,et al.  On the Analysis and Design of Group Theoretical T-syEC/AUED Codes , 1996, IEEE Trans. Computers.