Optimal field reconstruction of distributed process systems from partial measurements

In this article, we develop a systematic approach for efficient field reconstruction in distributed process systems from a limited number of measurements. The approach generalizes previous methods for sensor placement so as to be able to handle field reconstruction problems in arbitrary spatial domains where complex nonlinear phenomena take place. Pattern formation in fluid dynamics or diffusion-reaction systems are examples exhibiting complex nonlinear distributed behaviors, especially when taking place in arbitrary 2D or 3D domains. Our approach exploits the dissipative nature of the diffusion-convection process and the underlying algebraic structure of the finite element method to efficiently construct field representations in terms of globally defined basis functions and to optimally select the placement of sensors. The results will be illustrated on a fluid dynamic process:  the Rayleigh−Benard problem.

[1]  Julio R. Banga,et al.  Dissipative systems: from physics to robust nonlinear control , 2004 .

[2]  Michael A. Demetriou,et al.  A new integrated output feedback controller synthesis and collocated actuator/sensor scheduling framework for distributed parameter processes , 2005, Comput. Chem. Eng..

[3]  Karen Willcox,et al.  Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[4]  G. Stephanopoulos,et al.  Variable measurement structures for the control of a tubular reactor , 1981 .

[5]  Alain Vande Wouwer,et al.  An approach to the selection of optimal sensor locations in distributed parameter systems , 2000 .

[6]  J. Reddy An introduction to the finite element method , 1989 .

[7]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[8]  Panagiotis D. Christofides,et al.  Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport-reaction processes , 2001 .

[9]  H. Tran,et al.  Modeling and control of physical processes using proper orthogonal decomposition , 2001 .

[10]  Antonio A. Alonso,et al.  Stabilization of distributed systems using irreversible thermodynamics , 2001, Autom..

[11]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[12]  Kelly Cohen,et al.  A heuristic approach to effective sensor placement for modeling of a cylinder wake , 2006 .

[13]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[14]  J. Seinfeld,et al.  Optimal location of measurements for distributed parameter estimation , 1978 .

[15]  Julio R. Banga,et al.  Passive control design for distributed process systems: Theory and applications , 2000 .

[16]  Age K. Smilde,et al.  Selection of optimal sensor position in a tubular reactor using robust degree of observability criteria , 2000 .

[17]  John F. MacGregor,et al.  Optimal sensor location with an application to a packed bed tubular reactor , 1979 .

[18]  Carlos S. Kubrusly,et al.  Sensors and controllers location in distributed systems - A survey , 1985, Autom..

[19]  Julio R. Banga,et al.  Optimal sensor location and reduced order observer design for distributed process systems , 2002 .

[20]  S. Ravindran A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .

[21]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[22]  Antonio A. Alonso,et al.  Optimal sensor placement for state reconstruction of distributed process systems , 2004 .

[23]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[24]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[25]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[26]  Gene H. Golub,et al.  Matrix computations , 1983 .