Assessment of Fire Fuel Load Dynamics in Shrubland Ecosystems in the Western United States Using MODIS Products

[1]  Peter E. Thornton,et al.  Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls , 2000 .

[2]  R. Keane,et al.  Revisiting Wildland Fire Fuel Quantification Methods: The Challenge of Understanding a Dynamic, Biotic Entity , 2017 .

[3]  M. Rollins LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment , 2009 .

[4]  M. Shaw,et al.  CONTROL OF LITTER DECOMPOSITION IN A SUBALPINE MEADOW-SAGEBRUSH STEPPE ECOTONE UNDER CLIMATE CHANGE , 2001 .

[5]  Peter S. Curtis,et al.  NITROGEN ADDITIONS AND LITTER DECOMPOSITION: A META-ANALYSIS , 2005 .

[6]  Carlo Ricotta,et al.  Mapping Forest Fuels through Vegetation Phenology: The Role of Coarse-Resolution Satellite Time-Series , 2015, PloS one.

[7]  Xiaolin Zhu,et al.  An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions , 2010 .

[8]  E. Pendall,et al.  Aboveground and Belowground Carbon Pools After Fire in Mountain Big Sagebrush Steppe , 2010 .

[9]  Chengquan Huang,et al.  Monitoring Landscape Change for LANDFIRE Using Multi-Temporal Satellite Imagery and Ancillary Data , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  S. Goward,et al.  Global Primary Production: A Remote Sensing Approach , 1995 .

[11]  T. Swetnam,et al.  Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity , 2006, Science.

[12]  D. Riaño,et al.  Estimation of live fuel moisture content from MODIS images for fire risk assessment , 2008 .

[13]  C. Field,et al.  Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types , 1995 .

[14]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[15]  J. Reynolds,et al.  Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought , 2003 .

[16]  R. Burgan,et al.  Fuel Models and Fire Potential From Satellite and Surface Observations , 1998 .

[17]  F. M. Danson,et al.  A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving t , 2013 .

[18]  G. Henebry,et al.  Development and evaluation of a new algorithm for detecting 30 m land surface phenology from VIIRS and HLS time series , 2020 .

[19]  Tracy E. Perfors,et al.  Enhanced growth of sagebrush (Artemisia tridentata) in response to manipulated ecosystem warming , 2003 .

[20]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[21]  B. Quayle,et al.  A Project for Monitoring Trends in Burn Severity , 2007 .

[22]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[23]  N. West,et al.  Recovery of Sagebrush-Grass Vegetation Following Wildfire , 1985 .

[24]  Gareth Roberts,et al.  Fire Activity and Fuel Consumption Dynamics in Sub-Saharan Africa , 2018, Remote. Sens..

[25]  Lei Ji,et al.  Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition , 2015, Remote. Sens..

[26]  R. J. Olson,et al.  Estimating net primary productivity from grassland biomass dynamics measurements , 2002 .

[27]  Steven W. Running,et al.  Response to Comments on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009” , 2011, Science.

[28]  J. Wickham,et al.  Completion of the 2001 National Land Cover Database for the conterminous United States , 2007 .

[29]  David Riaño,et al.  Monitoring Live Fuel Moisture Using Soil Moisture and Remote Sensing Proxies , 2012, Fire Ecology.

[30]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[31]  S. Stephens,et al.  FEDERAL FOREST‐FIRE POLICY IN THE UNITED STATES , 2005 .

[32]  S. Archer,et al.  Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland. , 2007, Ecological applications : a publication of the Ecological Society of America.

[33]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[34]  Peter E. Thornton,et al.  Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests , 2002 .

[35]  S. Running,et al.  A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes , 1988 .

[36]  C. Wirth,et al.  Reconciling Carbon-cycle Concepts, Terminology, and Methods , 2006, Ecosystems.

[37]  Maosheng Zhao,et al.  Applying Improved Estimates of MODIS Productivity to Characterize Grassland Vegetation Dynamics , 2006 .

[38]  K. Davies,et al.  Short-term Effects of Burning Wyoming Big Sagebrush Steppe in Southeast Oregon , 2007 .

[39]  M. de Luis,et al.  Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. , 2002, Journal of environmental management.