-analogues of Factorization Problems in the Symmetric Group

We consider GL n ( F q ) -analogues of certain factorization problems in the symmetric group S n : rather than counting factorizations of the long cycle ( 1 , 2 , ź , n ) given the number of cycles of each factor, we count factorizations of a regular elliptic element given the fixed space dimension of each factor. We show that, as in S n , the generating function counting these factorizations has attractive coefficients after an appropriate change of basis. Our work generalizes several recent results on factorizations in GL n ( F q ) and also uses a character-based approach.As an application of our results, we compute the asymptotic growth rate of the number of factorizations of fixed genus of a regular elliptic element in GL n ( F q ) into two factors as n ź ∞ . We end with a number of open questions.

[1]  Victor Reiner,et al.  The cyclic sieving phenomenon , 2004, J. Comb. Theory A.

[2]  Olivier Bernardi,et al.  An analogue of the Harer-Zagier formula for unicellular maps on general surfaces , 2010, Adv. Appl. Math..

[3]  R. Steinberg,et al.  A geometric approach to the representations of the full linear group over a Galois field , 1951 .

[4]  Jason E. Fulman A Probabilistic Approach Toward Conjugacy Classes in the Finite General Linear and Unitary Groups , 1999 .

[5]  Victor Reiner,et al.  Absolute order in general linear groups , 2017, J. Lond. Math. Soc..

[6]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[7]  P. Diaconis,et al.  Supercharacters and superclasses for algebra groups , 2007 .

[8]  Ekaterina A. Vassilieva,et al.  A bijective proof of Jackson's formula for the number of factorizations of a cycle , 2008, J. Comb. Theory, Ser. A.

[9]  Alejandro H. Morales,et al.  Bijections and symmetries for the factorizations of the long cycle , 2013, Adv. Appl. Math..

[10]  P. Diaconis,et al.  Supercharacter formulas for pattern groups , 2006, math/0610161.

[11]  A. Zvonkin,et al.  Graphs on Surfaces and Their Applications , 2003 .

[12]  J. Harer,et al.  The Euler characteristic of the moduli space of curves , 1986 .

[13]  Éric Fusy,et al.  A simple model of trees for unicellular maps , 2012, J. Comb. Theory A.

[14]  D. Jackson Counting cycles in permutations by group characters, with an application to a topological problem , 1987 .

[15]  Tamás Hausel,et al.  Arithmetic harmonic analysis on character and quiver varieties II , 2008, 0810.2076.

[16]  V. Reiner,et al.  Reflection factorizations of Singer cycles , 2013, 1308.1468.

[17]  Alejandro H. Morales,et al.  Some Probabilistic Trees with Algebraic Roots , 2016, Electron. J. Comb..

[18]  T. Koornwinder,et al.  BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .

[19]  Gilles Schaeffer,et al.  Factoring N-Cycles and Counting Maps of Given Genus , 1998, Eur. J. Comb..

[20]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[21]  Victor Reiner,et al.  Hopf Algebras in Combinatorics , 2014, 1409.8356.

[22]  Richard P. Stanley,et al.  Factorization of permutations into n-cycles , 1981, Discret. Math..

[23]  Margaret Nichols Trans , 2015, De-centering queer theory.

[24]  I. Goulden,et al.  Transitive factorizations of permutations and geometry , 2014, 1407.7568.

[25]  Alejandro H. Morales,et al.  Direct Bijective Computation of the Generating Series for 2 and 3-Connection Coefficients of the Symmetric Group , 2013, Electron. J. Comb..

[26]  V. Reiner,et al.  Springer's regular elements over arbitrary fields , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  Ian P. Goulden,et al.  Combinatorial constructions for integrals over normally distributed random matrices , 1995 .

[28]  J. A. Green,et al.  The characters of the finite general linear groups , 1955 .

[29]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[30]  A. V. Zelevinsky,et al.  Representations of Finite Classical Groups: A Hopf Algebra Approach , 1981 .

[31]  David M. Jackson Some combinatorial problems associated with products of conjugacy classes of the symmetric group , 1988, J. Comb. Theory, Ser. A.

[32]  Jason E. Fulman,et al.  On the Distribution of the Number of Fixed Vectors for the Finite Classical Groups , 2015, 1505.06383.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Richard P. Stanley,et al.  Some combinatorial aspects of the spectra of normally distributed random matrices , 1992 .

[35]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.