Thermal efficiency of different coverage materials in reduced models of animal husbandry facilities: a case study.

This study aimed to assess different combinations of coverage materials in reduced models of animal husbandry facilities based on thermal comfort indices. It was conducted in an experimental area of the Research Center in Ambience located in São Paulo State, Brazil (22°42′30′′ S and 47°38′00′′ W). The performance of ceramic and fiber-cement (white painted) tiles was assessed associated with two types of polypropylene commercial linings (lining A and B) installed below the roof, and a thermo-reflective screen (lining C) installed above the fiber-cement roof. Microclimatic assessment of distorted reduced-scale models was performed at 15-minute intervals by registering the air temperature, black globe temperature, relative humidity and air velocity. Subsequently, black globe humidity index, specific enthalpy, and radiant heat load were calculated. The experimental design was randomized block design with 5 treatments and 15 blocks (replications), totaling 75 experimental units. The reduced-scale models with lining B presented a reduction for all thermal comfort indices. Lining C, installed on the coverage, showed no upgrading of environmental thermal conditions. Thus, lining B presented a better thermal performance regardless the tile type.

[1]  A. Fernandes,et al.  Efeito de materiais isolantes térmicos em aviários no desempenho de frango de corte , 2008 .

[2]  S. Tangjuank,et al.  Particle Boards from Papyrus Fibers as Thermal Insulation , 2011 .

[3]  Inajá Francisco de Sousa,et al.  Estudo bioclimático das regiões litorânea, agreste e semiárida do estado de Sergipe para a avicultura de corte e postura , 2013 .

[4]  Carlos Augusto de Paiva Sampaio,et al.  Temperaturas superficiais de telhas e sua relação com o ambiente térmico , 2011 .

[5]  R. A. Bailey,et al.  Design of comparative experiments , 2008 .

[6]  R. Lamberts,et al.  Evaluation of heat flux reduction provided by the use of radiant barriers in clay tile roofs , 2008 .

[7]  Merle L. Esmay,et al.  Principles of animal environment , 1978 .

[8]  A. Abdelqader,et al.  Thermal acclimation of broiler birds by intermittent heat exposure , 2014 .

[9]  E. Almeida,et al.  Intervenção ambiental na cobertura e ventilação artificial sobre índices de conforto para aves de corte , 2013 .

[10]  J. C. Barnabé,et al.  Conforto térmico e desempenho de bezerras Girolando alojadas em abrigos individuais com diferentes coberturas , 2015 .

[11]  V. M. Abreu,et al.  Condições térmicas ambientais e desempenho de aves criadas em aviários com e sem o uso de forro , 2007 .

[12]  Tatiana P. N. da Silva,et al.  Tipologia de instalações avícolas na região Agreste de Pernambuco , 2015 .

[13]  D. E. Buffington,et al.  Black Globe-Humidity Index (BGHI) as Comfort Equation for Dairy Cows , 1981 .

[14]  Paulo Roberto Cecon,et al.  CONFORTO TÉRMICO EM GALPÕES AVÍCOLAS, SOB COBERTURAS DE CIMENTO-AMIANTO E SUAS DIFERENTES ASSOCIAÇÕES , 1999 .

[15]  Valéria Cristina Rodrigues,et al.  A correct enthalpy relationship as thermal comfort index for livestock , 2011, International journal of biometeorology.

[16]  J. C. M. Cravo,et al.  Forro ecológico de resíduos agroindustriais para galpões avícolas , 2014 .

[17]  Tadayuki Yanagi Junior,et al.  Reaproveitamento de resíduos de embalagens Tetra Pak-® em coberturas , 2015 .

[18]  Mylo A. Hellickson,et al.  Ventilation of agricultural structures , 1983 .

[19]  Roberta Passini,et al.  Thermal comfort in reduced models of broilers' houses, under different types of roofing materials , 2013 .

[20]  H. Lin,et al.  Thermoregulation responses of broiler chickens to humidity at different ambient temperatures. I. One week of age. , 2005, Poultry science.

[21]  G. Tonoli,et al.  Thermal performance of sisal fiber-cement roofing tiles for rural constructions , 2011 .

[22]  Roberta Passini,et al.  Thermal comfort indices in individual shelters for dairy calves with different types of roofs , 2011 .

[23]  G. B. Mourão,et al.  Bands of respiratory rate and cloacal temperature for different broiler chicken strains , 2012 .

[24]  Fernando da Costa Baêta,et al.  PARÂMETROS ARQUITETÔNICO-AMBIENTAIS PARA CONSTRUÇÃO E TESTES EM MODELOS REDUZIDOS, REPRESENTATIVOS DE GALPÕES AVÍCOLAS, COM BASE EM SIMILITUDE , 2013 .

[25]  S. T. Nascimento,et al.  Mean surface temperature prediction models for broiler chickens—a study of sensible heat flow , 2014, International Journal of Biometeorology.