Group symmetry and covariance regularization

Statistical models that possess symmetry arise in diverse settings such as random fields associated to geophysical phenomena, exchangeable processes in Bayesian statistics, and cyclostationary processes in engineering. We formalize the notion of a symmetric model via group invariance. We propose projection onto a group fixed point subspace as a fundamental way of regularizing covariance matrices in the high-dimensional regime. In terms of parameters associated to the group we derive precise rates of convergence of the regularized covariance matrix and demonstrate that significant statistical gains may be expected in terms of the sample complexity.

[1]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[2]  A. Willsky,et al.  Latent variable graphical model selection via convex optimization , 2010 .

[3]  G.,et al.  A Wreath Product Group Approach to Signal and Image Processing : Part I | Multiresolution AnalysisR , 1999 .

[4]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.

[5]  E. D. Klerk,et al.  Exploiting group symmetry in truss topology optimization , 2007 .

[6]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[7]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[8]  Ingram Olkin,et al.  Testing and Estimation for a Circular Stationary Model , 1969 .

[9]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[10]  S. S. Wilks Sample Criteria for Testing Equality of Means, Equality of Variances, and Equality of Covariances in a Normal Multivariate Distribution , 1946 .

[11]  V. Chandrasekaran,et al.  Group symmetry and covariance regularization , 2012 .

[12]  J. Besag,et al.  On the estimation and testing of spatial interaction in Gaussian lattice processes , 1975 .

[13]  Thomas Strohmer Four short stories about Toeplitz matrix calculations , 2000 .

[14]  Mark J. Schervish,et al.  A Review of Multivariate Analysis , 1987 .

[15]  H. Munthe-Kaas On group Fourier analysis and symmetry preserving discretizations of PDEs , 2006 .

[16]  D. Kamenetsky Symmetry Groups , 2003 .

[17]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[18]  Dennis M. Healy,et al.  A wreath product group approach to signal and image processing .I. Multiresolution analysis , 2000, IEEE Trans. Signal Process..

[19]  Randall R. Holmes Linear Representations of Finite Groups , 2008 .

[20]  F. Vallentin Symmetry in semidefinite programs , 2007, 0706.4233.

[21]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[22]  Michael D. Perlman,et al.  [A Review of Multivariate Analysis]: Comment: Group Symmetry Covariance Models , 1987 .

[23]  Pablo A. Parrilo,et al.  Latent variable graphical model selection via convex optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  Søren Højsgaard,et al.  Graphical Gaussian models with edge and vertex symmetries , 2008 .

[25]  Michael I. Jordan Graphical Models , 2003 .

[26]  Antonio Napolitano,et al.  Cyclostationarity: Half a century of research , 2006, Signal Process..

[27]  José M. F. Moura,et al.  Gauss-Markov random fields (CMrf) with continuous indices , 1997, IEEE Trans. Inf. Theory.

[28]  S. A. Andersson,et al.  SYMMETRY AND LATTICE CONDITIONAL INDEPENDENCE IN A MULTIVARIATE NORMAL DISTRIBUTION , 1998 .

[29]  Peter Congdon,et al.  Gaussian Markov Random Fields: Theory and Applications , 2007 .

[30]  V. Buldygin,et al.  Metric characterization of random variables and random processes , 2000 .

[31]  P. Diaconis Group representations in probability and statistics , 1988 .

[32]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[33]  A. Fässler,et al.  Group Theoretical Methods and Their Applications , 1992 .

[34]  Stephen P. Boyd,et al.  Fastest Mixing Markov Chain on Graphs with Symmetries , 2007, SIAM J. Optim..

[35]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[36]  N. Katoh,et al.  Group Symmetry in Interior-Point Methods for Semidefinite Program , 2001 .

[37]  Jianqing Fan,et al.  High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.

[38]  Alexander Schrijver,et al.  New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.

[39]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[40]  D. Votaw Testing Compound Symmetry in a Normal Multivariate Distribution , 1948 .

[41]  Alexandre d'Aspremont,et al.  First-Order Methods for Sparse Covariance Selection , 2006, SIAM J. Matrix Anal. Appl..

[42]  Jesper Madsen Invariant normal models with recursive graphical Markov structure , 2000 .

[43]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[44]  Steen A. Andersson,et al.  Invariant Normal Models , 1975 .

[45]  A. Willsky Multiresolution Markov models for signal and image processing , 2002, Proc. IEEE.

[46]  Alexander Schrijver,et al.  Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation , 2007, Math. Program..

[47]  Bin Yu,et al.  High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.

[48]  R. Tennant Algebra , 1941, Nature.