Physiologic Plasticity, Evolution, and Impacts of a Changing Climate on Pinus Contorta

[1]  D. Spittlehouse,et al.  GENETIC RESPONSES TO CLIMATE IN PINUS CONTORTA: NICHE BREADTH, CLIMATE CHANGE, AND REFORESTATION , 1999 .

[2]  Finzi,et al.  Net primary production of a forest ecosystem with experimental CO2 enrichment , 1999, Science.

[3]  E. Box,et al.  Predicted Effects of Climatic Change on Distribution of Ecologically Important Native Tree and Shrub Species in Florida , 1999 .

[4]  A. Prasad,et al.  PREDICTING ABUNDANCE OF 80 TREE SPECIES FOLLOWING CLIMATE CHANGE IN THE EASTERN UNITED STATES , 1998 .

[5]  A. Solomon,et al.  Climate Change and Terrestrial Biomass: What if Trees do not Migrate? , 1997 .

[6]  G. Rehfeldt Quantitative analyses of the genetic structure of closely related conifers with disparate distributions and demographics: the Cupressus arizonica (Cupressaceae) complex. , 1997, American journal of botany.

[7]  S. Ferguson A Climate-Change Scenario for the Columbia River Basin , 1997 .

[8]  James S. Clark,et al.  Terrestrial biotic responses to environmental change and feedbacks to climate , 1996 .

[9]  C. Ying,et al.  Genetic architecture and adaptive landscape of interior lodgepole pine (Pinus contorta ssp. latifolia) in Canada , 1995 .

[10]  W. Kurz,et al.  Global climatic change: Disturbance regimes and biospheric feedbacks of temperate and boreal forests , 1995 .

[11]  C. Ying,et al.  Geographic pattern of adaptive variation of lodgepole pine (Pinus contorta Dougl.) within the species' coastal range: field performance at age 20 years , 1994 .

[12]  G. Rehfeldt Adaptation of Picea engelmannii populations to the heterogeneous environments of the Intermountain West , 1994 .

[13]  F. Giorgi,et al.  Regional Climate Change Scenarios over the United States Produced with a Nested Regional Climate Model , 1994 .

[14]  A climatic model for location of plant species in Florida, U.S.A. , 1993 .

[15]  R. Leemans,et al.  Global vegetation change predicted by the modified Budyko model , 1993 .

[16]  H. Shugart,et al.  The transient response of terrestrial carbon storage to a perturbed climate , 1993, Nature.

[17]  Ronald P. Neilson,et al.  The transient response of vegetation to climate change: A potential source of CO2 to the atmosphere , 1992 .

[18]  T. Wigley,et al.  Implications for climate and sea level of revised IPCC emissions scenarios , 1992, Nature.

[19]  W. Cramer,et al.  A global biome model based on plant physiology and dominance, soil properties and climate , 1992 .

[20]  Thomas M. Smith,et al.  Modeling the Potential Response of Vegetation to Global Climate Change , 1992 .

[21]  M. B. Davis,et al.  Lags in vegetation response to greenhouse warming , 1989 .

[22]  A. Kozak,et al.  A variable-exponent taper equation , 1988 .

[23]  A. J. Noordwijk Futuyma, D. J. 1986. Evolutionary Biology 2nd edition, Sinauer Associates Inc. Sunderland, Mass. , 1988 .

[24]  W. Arthur The niche in competition and evolution , 1987 .

[25]  G. Rehfeldt Genetic variances and covariances in Pinus contorta: estimates of genetic gains from index selection , 1985 .

[26]  A. D. Bradshaw,et al.  Evolutionary Significance of Phenotypic Plasticity in Plants , 1965 .

[27]  Cedric A. B. Smith,et al.  Introduction to Quantitative Genetics , 1960 .