Practical issues in state estimation using particle filters: Case studies with polymer reactors

Abstract In this paper, we compare Kalman update based filters with particle filters using simulations on polymerization processes. In particular, we compare the unscented Kalman filter (UKF) and the particle filter (PF) for the case of significant plant–model mismatch. The sequential importance resampling particle filter is shown to be less robust than the Kalman update-based filters. This issue is solved by bootstrapping the PF with the UKF, i.e., using the UKF as the proposal distribution; this retains its ability to estimate non-Gaussian distributions while providing robustness with respect to plant–model mismatch. Finally, we explore methods of obtaining a point estimate from the state distributions of the PF.

[1]  J. Macgregor,et al.  A kinetic model for industrial gas-phase ethylene copolymerization , 1990 .

[2]  Bjarne A. Foss,et al.  Applying the unscented Kalman filter for nonlinear state estimation , 2008 .

[3]  David W. Bacon,et al.  Gas Phase Ethylene Polymerization: Production Processes, Polymer Properties, and Reactor Modeling , 1994 .

[4]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[5]  P. McLellan,et al.  Effects of operating conditions on stability of gas‐phase polyethylene reactors , 1995 .

[6]  Andrei Romanenko,et al.  The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study , 2004, Comput. Chem. Eng..

[7]  Beirnes Kim McAuley,et al.  Modelling, Estimation and Control of Product Properties in a Gas Phase Polyethylene Reactor , 1991 .

[8]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[9]  John F. MacGregor,et al.  Nonlinear product property control in industrial gas‐phase polyethylene reactors , 1993 .

[10]  B. Bequette,et al.  Product property and production rate control of styrene polymerization , 2002 .

[11]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[12]  Aparajita Sengupta,et al.  Likelihood function modeling of particle filter in presence of non-stationary non-gaussian measurement noise , 2010, Signal Process..

[13]  Bjarne A. Foss,et al.  Constrained nonlinear state estimation based on the UKF approach , 2009, Comput. Chem. Eng..

[14]  D. Wilson,et al.  Experiences implementing the extended Kalman filter on an industrial batch reactor , 1998 .

[15]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[16]  Elaine Martin,et al.  Particle filters for state and parameter estimation in batch processes , 2005 .

[17]  Archie E. Hamielec,et al.  A kinetic mathematical model for heterogeneous Ziegler-Natta copolymerization , 1989 .

[18]  Yaman Arkun,et al.  Estimation and control of an α-olefin polymerization reactor , 1995 .

[19]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[20]  Tor Steinar Schei On-line estimation for process control and optimization applications , 2008 .

[21]  Arjun Shenoy,et al.  Closed Loop Regulatory Control Strategies for a Fluidized Bed Reactor: An Industrial Case Study , 2008 .

[22]  A. J. Morris,et al.  Online optimizing control of molecular weight properties in batch free-radical polymerization reactors , 2002 .

[23]  S. Bankoff,et al.  Digital monitorina and estimation of polymerization reactors , 1976 .

[24]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[25]  Biao Huang,et al.  Estimation of States of Nonlinear Systems using a Particle Filter , 2006, 2006 IEEE International Conference on Industrial Technology.

[26]  B. Bakshi,et al.  Bayesian estimation via sequential Monte Carlo sampling: Unconstrained nonlinear dynamic systems , 2004 .

[27]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[28]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[29]  Biao Huang,et al.  Constrained Bayesian state estimation – A comparative study and a new particle filter based approach , 2010 .

[30]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[31]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[32]  Thomas F. Edgar,et al.  Nonlinear state estimation , 1997 .

[33]  J. Macgregor,et al.  On‐line inference of polymer properties in an industrial polyethylene reactor , 1991 .

[34]  Juergen Hahn,et al.  Process monitoring and parameter estimation via unscented Kalman filtering , 2009 .

[35]  John F. MacGregor,et al.  State estimation for semi-batch polymerization reactors , 1992 .

[36]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[37]  Sirish L. Shah,et al.  Constrained Nonlinear State Estimation Using Ensemble Kalman Filters , 2010 .

[38]  Sirish L. Shah,et al.  Practical issues in the application of the particle filter for estimation of chemical processes , 2011 .

[39]  Sirish L. Shah,et al.  On the choice of importance distributions for unconstrained and constrained state estimation using particle filter , 2011 .

[40]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .