Artificial Gene Regulatory Networks—A Review

In nature, gene regulatory networks are a key mediator between the information stored in the DNA of living organisms (their genotype) and the structural and behavioral expression this finds in their bodies, surviving in the world (their phenotype). They integrate environmental signals, steer development, buffer stochasticity, and allow evolution to proceed. In engineering, modeling and implementations of artificial gene regulatory networks have been an expanding field of research and development over the past few decades. This review discusses the concept of gene regulation, describes the current state of the art in gene regulatory networks, including modeling and simulation, and reviews their use in artificial evolutionary settings. We provide evidence for the benefits of this concept in natural and the engineering domains.

[1]  Ernesto Costa,et al.  The Regulatory Network Computational Device , 2012, Genetic Programming and Evolvable Machines.

[2]  Ido Golding,et al.  Genetic Determinants and Cellular Constraints in Noisy Gene Expression , 2013, Science.

[3]  W. Banzhaf,et al.  Genetic Programming of an Algorithmic Chemistry , 2005 .

[4]  Glazier,et al.  Simulation of biological cell sorting using a two-dimensional extended Potts model. , 1992, Physical review letters.

[5]  Kyle Harrington,et al.  Competitive dynamics in eco-evolutionary genetically-regulated swarms , 2017, ECAL.

[6]  D. Moazed,et al.  Heterochromatin and Epigenetic Control of Gene Expression , 2003, Science.

[7]  René Doursat,et al.  Organically Grown Architectures: Creating Decentralized, Autonomous Systems by Embryomorphic Engineering , 2008, Organic Computing.

[8]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[9]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[10]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[11]  Yves Duthen,et al.  Self-organization of Symbiotic Multicellular Structures , 2014 .

[12]  Holger Gerhardt,et al.  A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development , 2013, Development.

[13]  A. Bird,et al.  Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals , 2003, Nature Genetics.

[14]  Jean Krohn,et al.  A gene regulatory network model for control , 2013 .

[15]  Thimo Rohlf,et al.  Emergent Network Structure, Evolvable Robustness, and Nonlinear Effects of Point mutations in an Artificial genome Model , 2009, Adv. Complex Syst..

[16]  Kyle I. S. Harrington,et al.  A circuit basis for morphogenesis , 2016, Theor. Comput. Sci..

[17]  Paul A. Bates,et al.  Tipping the Balance: Robustness of Tip Cell Selection, Migration and Fusion in Angiogenesis , 2009, PLoS Comput. Biol..

[18]  Ira Herskowitz,et al.  Mechanisms of asymmetric cell division: Two Bs or not two Bs, that is the question , 1992, Cell.

[19]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[20]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.

[21]  David J. Jörg,et al.  Faster embryonic segmentation through elevated Delta-Notch signalling , 2016, Nature Communications.

[22]  S. Strome,et al.  H3K27me and PRC2 transmit a memory of repression across generations and during development , 2014, Science.

[23]  Chrystopher L. Nehaniv,et al.  Evolution and Morphogenesis of Differentiated Multicellular Organisms - Autonomously Generated Diffusion Gradients for Positional Information , 2008, ALIFE.

[24]  Oriol Vinyals,et al.  Hierarchical Representations for Efficient Architecture Search , 2017, ICLR.

[25]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[26]  A. Arkin,et al.  From Fluctuations to Phenotypes: The Physiology of Noise , 2006, Science's STKE.

[27]  DoursatRené,et al.  Growing Fine-Grained Multicellular Robots , 2014 .

[28]  Bernhard Sendhoff,et al.  Emerged Coupling of Motor Control and Morphological Development in Evolution of Multi-cellular Animats , 2009, ECAL.

[29]  Hervé Luga,et al.  Artificial gene regulatory networks and spatial computation: A case study , 2011, ECAL.

[30]  R. Doursat,et al.  Growing Fine-Grained Multicellular Robots , 2014 .

[31]  Christopher A. Voigt,et al.  Realizing the potential of synthetic biology , 2014, Nature Reviews Molecular Cell Biology.

[32]  Anton Crombach,et al.  Evolution of Evolvability in Gene Regulatory Networks , 2008, PLoS Comput. Biol..

[33]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[34]  Carlos Gershenson Self-Organization and Emergence in Life Sciences. Bernard Feltz, Marc Crommelinck, and Philippe Goujon (Eds.). (2006, Synthese Library Vol. 331, Springer.) Hardcover, 139, $179, 360 pages , 2008, Artificial Life.

[35]  Peter J. Bentley,et al.  Biologically Inspired Evolutionary Development , 2003, ICES.

[36]  Hervé Luga,et al.  From Single Cell to Simple Creature Morphology and Metabolism , 2008, ALIFE.

[37]  Guy Karlebach,et al.  Modelling and analysis of gene regulatory networks , 2008, Nature Reviews Molecular Cell Biology.

[38]  Hugo de GARIS ARTIFICIAL EMBRYOLOGY AND CELLULAR DIFFERENTIATION , 1999 .

[39]  Wolfgang Reisig Petri Nets: An Introduction , 1985, EATCS Monographs on Theoretical Computer Science.

[40]  Bernhard Sendhoff,et al.  Redundancy in the Evolution of Artificial Gene Regulatory Networks for Morphological Development , 2010 .

[41]  S. Kauffman,et al.  Genetic networks with canalyzing Boolean rules are always stable. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Kauffman,et al.  Robustness and evolvability in genetic regulatory networks. , 2007, Journal of theoretical biology.

[43]  I. Nemenman,et al.  Information Transduction Capacity of Noisy Biochemical Signaling Networks , 2011, Science.

[44]  Borys Wróbel,et al.  Evolution of the Morphology and Patterning of Artificial Embryos: Scaling the Tricolour Problem to the Third Dimension , 2009, ECAL.

[45]  P. Bentley,et al.  Evolving beyond perfection: an investigation of the effects of long-term evolution on fractal gene regulatory networks. , 2004, Bio Systems.

[46]  Borys Wróbel,et al.  Using the Genetic Regulatory Evolving Artificial Networks (GReaNs) Platform for Signal Processing, Animat Control, and Artificial Multicellular Development , 2014, Growing Adaptive Machines.

[47]  Anthony Brabazon,et al.  Dynamic Index Trading Using a Gene Regulatory Network Model , 2014, EvoApplications.

[48]  Claes Ohlsson,et al.  A gene expression fingerprint of mouse stomach ECL cells. , 2005, Biochemical and biophysical research communications.

[49]  Torsten Reil,et al.  Dynamics of Gene Expression in an Artificial Genome - Implications for Biological and Artificial Ontogeny , 1999, ECAL.

[50]  Borys Wróbel,et al.  Open Ended Evolution of 3D Multicellular Development Controlled by Gene Regulatory Networks , 2012, ALIFE.

[51]  Jordan B. Pollack,et al.  Robot coverage control by evolved neuromodulation , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[52]  O. Porras,et al.  Glutamate Triggers Rapid Glucose Transport Stimulation in Astrocytes as Evidenced by Real-Time Confocal Microscopy , 2003, The Journal of Neuroscience.

[53]  Ilya Shmulevich,et al.  On Learning Gene Regulatory Networks Under the Boolean Network Model , 2003, Machine Learning.

[54]  R. Pfeifer,et al.  Evolving Complete Agents using Artificial Ontogeny , 2003 .

[55]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[56]  Susan Stepney,et al.  Artificial Epigenetic Networks: Automatic Decomposition of Dynamical Control Tasks Using Topological Self-Modification , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[57]  Farren J. Isaacs,et al.  Computational studies of gene regulatory networks: in numero molecular biology , 2001, Nature Reviews Genetics.

[58]  Rui L. Lopes A Computational Model Inspired by Gene Regulatory Networks , 2014 .

[59]  Frank Dellaert,et al.  Toward an evolvable model of development for autonomous agent synthesis , 1994 .

[60]  Michael B. Elowitz,et al.  Synthetic biology: Precision timing in a cell , 2016, Nature.

[61]  Yves Duthen,et al.  Evolved Developmental Strategies of Artificial Multicellular Organisms , 2016, ALIFE.

[62]  Shibin Zhou,et al.  Synthetic biology: Bacteria synchronized for drug delivery , 2016, Nature.

[63]  E. Davidson The Regulatory Genome: Gene Regulatory Networks In Development And Evolution , 2006 .

[64]  Borys Wróbel,et al.  Co-evolution of morphology and control of soft-bodied multicellular animats , 2012, GECCO '12.

[65]  Hans Meinhardt,et al.  The Algorithmic Beauty of Sea Shells , 1998, The Virtual Laboratory.

[66]  K. Vousden,et al.  Regulation and function of the p53 tumor suppressor protein. , 2001, Current opinion in cell biology.

[67]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[68]  G. Wagner,et al.  THE EVOLUTION OF PHENOTYPIC CORRELATIONS AND “DEVELOPMENTAL MEMORY” , 2014, Evolution; international journal of organic evolution.

[69]  Michael A. Lones,et al.  Computing with Artificial Gene Regulatory Networks , 2016 .

[70]  David M. Holloway,et al.  Spatial Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo , 2008, PLoS Comput. Biol..

[71]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[72]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[73]  Hannah Dueck,et al.  Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation , 2015, Genome Biology.

[74]  A. Barr,et al.  A Simulation Testbed for the Study of Multicellular Development: The Multiple Mechanisms of Morphogenesis , 2008 .

[75]  Jordan B. Pollack,et al.  Using Pictures to Visualize the Complexity of Gene Regulatory Networks , 2012, ALIFE.

[76]  James M. Bower,et al.  Computational modeling of genetic and biochemical networks , 2001 .

[77]  J. Pollack,et al.  Developmental Encodings Promote the Emergence of Hierarchical Modularity , 2016, ALIFE.

[78]  H Matsuno,et al.  Hybrid Petri net representation of gene regulatory network. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[79]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[80]  John H. Conway,et al.  The game of life. , 1996, The Hastings Center report.

[81]  John F. Y. Brookfield,et al.  The ecology of the genome — mobile DNA elements and their hosts , 2005, Nature Reviews Genetics.

[82]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[83]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[84]  F. Crick On protein synthesis. , 1958, Symposia of the Society for Experimental Biology.

[85]  Cole Trapnell,et al.  Defining cell types and states with single-cell genomics , 2015, Genome research.

[86]  Daniel T. Gillespie,et al.  An Exact Method for Numerically Simulating the Stochastic Coalescence Process in a Cloud , 1975 .

[87]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[88]  G. Wagner,et al.  The evolutionary dynamics of evolvability in a gene network model , 2009, Journal of evolutionary biology.

[89]  Borys Wróbel,et al.  Evo-devo in silico - a Model of a Gene Network Regulating Multicellular Development in 3D Space with Artificial Physics , 2008, ALIFE.

[90]  Borys Wróbel,et al.  Evolving Gene Regulatory Networks for Real Time Control of Foraging Behaviours , 2010, ALIFE.

[91]  Julia A. Lasserre,et al.  Histone modification levels are predictive for gene expression , 2010, Proceedings of the National Academy of Sciences.

[92]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[93]  Katie Bentley,et al.  Can Active Perception Generate Bistability? Heterogeneous Collective Dynamics and Vascular Patterning , 2014 .

[94]  N. Rajewsky,et al.  The evolution of gene regulation by transcription factors and microRNAs , 2007, Nature Reviews Genetics.

[95]  Yves Duthen,et al.  A cell pattern generation model based on an extended artificial regulatory network , 2008, Biosyst..

[96]  Christopher A. Voigt,et al.  A Synthetic Genetic Edge Detection Program , 2009, Cell.

[97]  Peter Eggenberger-Hotz Evolving Morphologies of Simulated 3d Organisms Based on Differential Gene Expression , 2007 .

[98]  Mária Ercsey-Ravasz,et al.  Principles of dynamical modularity in biological regulatory networks , 2016, Scientific Reports.

[99]  Jing Hu,et al.  Biological Development of Cell Patterns: Characterizing the Space of Cell Chemistry Genetic Regulatory Networks , 2005, ECAL.

[100]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[101]  Lakshmi Venkatraman,et al.  Time to Decide? Dynamical Analysis Predicts Partial Tip/Stalk Patterning States Arise during Angiogenesis , 2016, PloS one.

[102]  Dmitri Papatsenko,et al.  The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Jané Kondev,et al.  Transcriptional control of noise in gene expression , 2008, Proceedings of the National Academy of Sciences.

[104]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[105]  Alex Andrianopoulos,et al.  Cis-Regulatory Elements in the Accord Retrotransposon Result in Tissue-Specific Expression of the Drosophila melanogaster Insecticide Resistance Gene Cyp6g1 , 2007, Genetics.

[106]  Anthony Brabazon,et al.  An examination of synchronisation in Artificial Gene Regulatory Networks , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[107]  Wolfgang Banzhaf On the Dynamics of an Artificial Regulatory Network , 2003, ECAL.

[108]  Borys Wróbel,et al.  Evolving Spiking Neural Networks in the GReaNs ( Gene Regulatory evolving artificial Networks ) Plaftorm , 2012 .

[109]  Phil Husbands,et al.  Asymmetric cell division and its integration with other developmental processes for artificial evolutionary systems , 2004 .

[110]  B C Goodwin,et al.  Drosophila segmentation: supercomputer simulation of prepattern hierarchy. , 1990, Journal of theoretical biology.

[111]  Martin Trefzer,et al.  Evolution and Analysis of a Robot Controller Based on a Gene Regulatory Network , 2010, ICES.

[112]  L. D. Whitley,et al.  Genetic Reinforcement Learning for Neurocontrol Problems , 2004, Machine Learning.

[113]  S. Artavanis-Tsakonas,et al.  Notch Signaling : Cell Fate Control and Signal Integration in Development , 1999 .

[114]  Wolfgang Banzhaf,et al.  Evolving Noisy Oscillatory Dynamics in Genetic Regulatory Networks , 2006, EuroGP.

[115]  Hod Lipson,et al.  ON THE ORIGIN OF MODULAR VARIATION , 2002, Evolution; international journal of organic evolution.

[116]  Stephen E. Von Stetina,et al.  A gene expression fingerprint of C. elegans embryonic motor neurons , 2005, BMC Genomics.

[117]  Brian D. Dynlacht,et al.  Regulation of transcription by proteins that control the cell cycle , 1997, Nature.

[118]  René Doursat,et al.  Facilitating evolutionary innovation by developmental modularity and variability , 2009, GECCO.

[119]  Sylvain Cussat-Blanc,et al.  Gene regulated car driving: using a gene regulatory network to drive a virtual car , 2014, Genetic Programming and Evolvable Machines.

[120]  Hervé Luga,et al.  A comparison of genetic regulatory network dynamics and encoding , 2017, GECCO.

[121]  Wolfgang Banzhaf,et al.  Evolving Dynamics in an Artificial Regulatory Network Model , 2004, PPSN.

[122]  W. Bialek,et al.  Information flow and optimization in transcriptional regulation , 2007, Proceedings of the National Academy of Sciences.

[123]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of Molecular Biology.

[124]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[125]  Julian Lewis,et al.  Neurogenic genes and vertebrate neurogenesis , 1996, Current Opinion in Neurobiology.

[126]  Edward R. Dougherty,et al.  From Boolean to probabilistic Boolean networks as models of genetic regulatory networks , 2002, Proc. IEEE.

[127]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[128]  Christopher A. Voigt,et al.  Synthetic biology: Engineering Escherichia coli to see light , 2005, Nature.

[129]  Claudine Chaouiya,et al.  Petri net modelling of biological networks , 2007, Briefings Bioinform..

[130]  Patrick T McGrath,et al.  Applying gene regulatory network logic to the evolution of social behavior , 2017, Proceedings of the National Academy of Sciences.

[131]  Peter A. Jones,et al.  The Role of DNA Methylation in Mammalian Epigenetics , 2001, Science.

[132]  Vahid Johari Majd,et al.  A New Artificial Genetic Regulatory Network Model and its Application in Two Dimensional Robot Control , 2013 .

[133]  T. Mestl,et al.  A mathematical framework for describing and analysing gene regulatory networks. , 1995, Journal of theoretical biology.

[134]  Risto Miikkulainen,et al.  Efficient evolution of neural networks through complexification , 2004 .

[135]  Cesar H Comin,et al.  Temporal modulation of collective cell behavior controls vascular network topology , 2016, eLife.

[136]  P. V. von Hippel,et al.  Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites. , 1988, Journal of molecular biology.

[137]  Linda R. Petzold,et al.  Improved leap-size selection for accelerated stochastic simulation , 2003 .

[138]  Borys Wróbel,et al.  Controlling development and chemotaxis of soft-bodied multicellular animats with the same gene regulatory network , 2013, ECAL.

[139]  Sylvain Cussat-Blanc,et al.  Genetically-regulated Neuromodulation Facilitates Multi-Task Reinforcement Learning , 2015, GECCO.

[140]  Junhyong Kim,et al.  RNA: state memory and mediator of cellular phenotype. , 2010, Trends in cell biology.

[141]  E. Segal,et al.  Predicting expression patterns from regulatory sequence in Drosophila segmentation , 2008, Nature.

[142]  Takaya Arita,et al.  Fine Grained Artificial Development for Body-Controller Coevolution of Soft-Bodied Animats , 2014, ALIFE.

[143]  Drew Endy,et al.  Engineering BioBrick vectors from BioBrick parts , 2008, Journal of Biological Engineering.

[144]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[145]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[146]  George Konidaris,et al.  METAMorph: Experimenting with Genetic Regulatory Networks for Artificial Development , 2005, ECAL.

[147]  T. L. Jacobsen,et al.  Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. , 1997, Development.

[148]  Marc Schoenauer,et al.  Evolving Genes to Balance a Pole , 2010, EuroGP.

[149]  Qing Nie,et al.  Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain , 2012, Molecular systems biology.

[150]  David Johan Christensen,et al.  Sensor-Coupled Fractal Gene Regulatory Networks for Locomotion Control of a Modular Snake Robot , 2010, DARS.

[151]  W. Banzhaf Artificial Regulatory Networks and Genetic Programming , 2003 .

[152]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[153]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .