The design plan of kinesin motors.

The kinesin superfamily comprises a large and structurally diverse group of microtubule-based motor proteins that produce a variety of force-generating activities within cells. This review addresses how the structures of kinesin proteins provide clues as to their biological functions and motile properties. We discuss structural features common to all kinesin motors, as well as specialized features that enable subfamilies of related motors to carry out specialized activities. We also discuss how the kinesin motor domain uses chemical energy from ATP hydrolysis to move along microtubules.

[1]  L. Goldstein,et al.  Characterization of the KIF3C neural kinesin-like motor from mouse. , 1998, Molecular biology of the cell.

[2]  J. Scholey,et al.  Heterotrimeric Kinesin-II Is Required for the Assembly of Motile 9+2 Ciliary Axonemes on Sea Urchin Embryos , 1997, The Journal of cell biology.

[3]  Ronald D Vale,et al.  The Directional Preference of Kinesin Motors Is Specified by an Element outside of the Motor Catalytic Domain , 1997, Cell.

[4]  R. Vale,et al.  The load dependence of kinesin's mechanical cycle. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Andreas Hoenger,et al.  A Model for the Microtubule-Ncd Motor Protein Complex Obtained by Cryo-Electron Microscopy and Image Analysis , 1997, Cell.

[6]  Ronald D Vale,et al.  Microtubule Interaction Site of the Kinesin Motor , 1997, Cell.

[7]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[8]  J. Gelles,et al.  Coupling of kinesin steps to ATP hydrolysis , 1997, Nature.

[9]  T. Yanagida,et al.  Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Hodges,et al.  Demonstration of Coiled-Coil Interactions within the Kinesin Neck Region Using Synthetic Peptides , 1997, The Journal of Biological Chemistry.

[11]  L. Goldstein,et al.  Characterization of KIFC2, a Neuronal Kinesin Superfamily Member in Mouse , 1997, Neuron.

[12]  N. Hirokawa,et al.  KIFC2 Is a Novel Neuron-Specific C-Terminal Type Kinesin Superfamily Motor for Dendritic Transport of Multivesicular Body-Like Organelles , 1997, Neuron.

[13]  T. Mitchison,et al.  XCTK2: A Kinesin-related Protein That Promotes Mitotic Spindle Assembly in Xenopus laevis Egg Extracts , 1997, The Journal of cell biology.

[14]  H. Morii,et al.  Identification of kinesin neck region as a stable alpha-helical coiled coil and its thermodynamic characterization. , 1997, Biochemistry.

[15]  E. Taylor,et al.  Interacting Head Mechanism of Microtubule-Kinesin ATPase* , 1997, The Journal of Biological Chemistry.

[16]  A. Reddy,et al.  In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  K. Hirose,et al.  The structure of microtubule-motor complexes. , 1997, Current opinion in cell biology.

[18]  C. Wylie,et al.  A Kinesin-like Protein Is Required for Germ Plasm Aggregation in Xenopus , 1996, Cell.

[19]  J. Scholey,et al.  An essential bipolar mitotic motor , 1996, Nature.

[20]  R. Hynes,et al.  Fibronectin receptor functions in embryonic cells deficient in alpha 5 beta 1 integrin can be replaced by alpha V integrins. , 1996, Molecular biology of the cell.

[21]  Armadillo repeats in the SpKAP115 subunit of kinesin-II. , 1996, Trends in cell biology.

[22]  S M Block,et al.  Fifty Ways to Love Your Lever: Myosin Motors , 1996, Cell.

[23]  R. Vale,et al.  Switches, latches, and amplifiers: common themes of G proteins and molecular motors , 1996, The Journal of cell biology.

[24]  R. Wade,et al.  Three-dimensional structure of functional motor proteins on microtubules , 1996, Current Biology.

[25]  N. Hirokawa,et al.  Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  L. Goldstein,et al.  Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein , 1996, The Journal of cell biology.

[27]  T. Mitchison,et al.  Kinesin-Related Proteins at Mitotic Spindle Poles: Function and Regulation , 1996, Cell.

[28]  Roger Cooke,et al.  Crystal structure of the motor domain of the kinesin-related motor ncd , 1996, Nature.

[29]  Ronald D. Vale,et al.  Crystal structure of the kinesin motor domain reveals a structural similarity to myosin , 1996, Nature.

[30]  Toshio Yanagida,et al.  Direct observation of single kinesin molecules moving along microtubules , 1996, Nature.

[31]  N. Hirokawa,et al.  Organelle transport along microtubules - the role of KIFs. , 1996, Trends in cell biology.

[32]  J. Scholey Kinesin-II, a membrane traffic motor in axons, axonemes, and spindles , 1996, The Journal of cell biology.

[33]  A. Reddy,et al.  A Novel Plant Calmodulin-binding Protein with a Kinesin Heavy Chain Motor Domain (*) , 1996, The Journal of Biological Chemistry.

[34]  J. Inoue,et al.  Kid, a novel kinesin‐like DNA binding protein, is localized to chromosomes and the mitotic spindle. , 1996, The EMBO journal.

[35]  L. Goldstein,et al.  Tetratrico peptide repeats are present in the kinesin light chain. , 1996, Trends in biochemical sciences.

[36]  J. Scholey,et al.  Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex , 1996, The Journal of cell biology.

[37]  R. Baskin,et al.  A bipolar kinesin , 1996, Nature.

[38]  T. Mitchison,et al.  XKCM1: A Xenopus Kinesin-Related Protein That Regulates Microtubule Dynamics during Mitotic Spindle Assembly , 1996, Cell.

[39]  A. Ndrewlockhart Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules , 1996 .

[40]  D. Hackney,et al.  The kinetic cycles of myosin, kinesin, and dynein. , 1996, Annual review of physiology.

[41]  J. Howard,et al.  The movement of kinesin along microtubules. , 1996, Annual review of physiology.

[42]  C A Smith,et al.  X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. , 1996, Biochemistry.

[43]  G. Steinberg,et al.  The Neurospora organelle motor: a distant relative of conventional kinesin with unconventional properties. , 1995, Molecular biology of the cell.

[44]  D. Hackney,et al.  Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains , 1995, Nature.

[45]  J. Scholey,et al.  Heterodimerization of the two motor subunits of the heterotrimeric kinesin, KRP85/95. , 1995, Journal of molecular biology.

[46]  N. Hirokawa,et al.  KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport , 1995, The Journal of cell biology.

[47]  K. Hirose,et al.  Nucleotide-dependent angular change in kinesin motor domain bound to tubulin , 1995, Nature.

[48]  N. Hirokawa,et al.  Three-dimensional structure of the kinesin headá¤-microtubule complex , 1995, Nature.

[49]  R. Fletterick,et al.  Three-dimensional structure of a tubulin-motor-protein complex , 1995, Nature.

[50]  C. Ponting AF-6/cno: neither a kinesin nor a myosin, but a bit of both. , 1995, Trends in biochemical sciences.

[51]  N. Hirokawa,et al.  The neuron-specific kinesin superfamily protein KIF1A is a uniqye monomeric motor for anterograde axonal transport of synaptic vesicle precursors , 1995, Cell.

[52]  G. Karpen,et al.  Interactions between the nod + kinesin-like gene and extracentromeric sequences are required for transmission of a drosophila minichromosome , 1995, Cell.

[53]  L. Goldstein,et al.  DNA binding and meiotic chromosomal localization of the drosophila nod kinesin-like protein , 1995, Cell.

[54]  I. Vernos,et al.  Xklp15 a chromosomal xenopus kinesin-like protein essential for spindle organization and chromosome positioning , 1995, Cell.

[55]  M. Dembo,et al.  Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics. , 1995, Biophysical journal.

[56]  L. Goldstein Structural features involved in force generation in the kinesin superfamily. , 1995, Biophysical journal.

[57]  Steven M. Block,et al.  Analysis of high resolution recordings of motor movement. , 1995, Biophysical journal.

[58]  N. Hirokawa,et al.  KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B , 1995, The Journal of cell biology.

[59]  M. Sheetz,et al.  Kinectin, an essential anchor for kinesin-driven vesicle motility. , 1995, Science.

[60]  R. Adler,et al.  Chromokinesin: a DNA-binding, kinesin-like nuclear protein , 1995, The Journal of cell biology.

[61]  Susan P. Gilbert,et al.  Pathway of processive ATP hydrolysis by kinesin , 1995, Nature.

[62]  J. Gelles,et al.  Failure of a single-headed kinesin to track parallel to microtubule protofilaments , 1995, Nature.

[63]  M. Sheetz,et al.  Characterization of kinectin, a kinesin-binding protein: primary sequence and N-terminal topogenic signal analysis. , 1995, Molecular biology of the cell.

[64]  E. Meyhöfer,et al.  The force generated by a single kinesin molecule against an elastic load. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[65]  K. Downing,et al.  Kinesin does not support the motility of zinc-macrotubes. , 1995, Cell motility and the cytoskeleton.

[66]  N. Hirokawa,et al.  KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria , 1994, Cell.

[67]  N. Hirokawa,et al.  A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally , 1994, The Journal of cell biology.

[68]  J. Scholey,et al.  A "slow" homotetrameric kinesin-related motor protein purified from Drosophila embryos. , 1994, The Journal of biological chemistry.

[69]  J. Howard,et al.  The force exerted by a single kinesin molecule against a viscous load. , 1994, Biophysical journal.

[70]  D. Hackney,et al.  Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[71]  H. Goodson,et al.  Molecular phylogeny of the kinesin family of microtubule motor proteins. , 1994, Journal of cell science.

[72]  Steven M. Block,et al.  Force and velocity measured for single kinesin molecules , 1994, Cell.

[73]  E. Salmon,et al.  Yeast Kar3 is a minus‐end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. , 1994, The EMBO journal.

[74]  N. Hirokawa,et al.  KIF3A is a new microtubule-based anterograde motor in the nerve axon , 1994, The Journal of cell biology.

[75]  R. Vale,et al.  Cloning and localization of a conventional kinesin motor expressed exclusively in neurons , 1994, Neuron.

[76]  M. Snyder,et al.  Localization of the Kar3 kinesin heavy chain-related protein requires the Cik1 interacting protein , 1994, The Journal of cell biology.

[77]  D. Hackney,et al.  Drosophila kinesin motor domain extending to amino acid position 392 is dimeric when expressed in Escherichia coli. , 1994, The Journal of biological chemistry.

[78]  J. Howard,et al.  Kinesin swivels to permit microtubule movement in any direction. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Scholey,et al.  Novel heterotrimeric kinesin-related protein purified from sea urchin eggs , 1993, Nature.

[80]  A. Spradling,et al.  The kinesin-like protein KLP61F is essential for mitosis in Drosophila , 1993, The Journal of cell biology.

[81]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[82]  L. Goldstein,et al.  The Drosophila kinesin light chain. Primary structure and interaction with kinesin heavy chain. , 1993, The Journal of biological chemistry.

[83]  R. Stewart,et al.  Direction of microtubule movement is an intrinsic property of the motor domains of kinesin heavy chain and Drosophila ncd protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[84]  R A Milligan,et al.  Kinesin follows the microtubule's protofilament axis , 1993, The Journal of cell biology.

[85]  E D Salmon,et al.  Structural and functional domains of the Drosophila ncd microtubule motor protein. , 1993, The Journal of biological chemistry.

[86]  L. Goldstein,et al.  With apologies to scheherazade: tails of 1001 kinesin motors. , 1993, Annual review of genetics.

[87]  N. Hirokawa,et al.  Kinesin family in murine central nervous system , 1992, The Journal of cell biology.

[88]  B. Schaar,et al.  CENP-E is a putative kinetochore motor that accumulates just before mitosis , 1992, Nature.

[89]  M. Hoyt,et al.  Kinesin-related proteins required for structural integrity of the mitotic spindle , 1992, Cell.

[90]  R. Vale,et al.  Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells , 1992, The Journal of cell biology.

[91]  L. Goldstein,et al.  Evidence that the stalk of Drosophila kinesin heavy chain is an alpha- helical coiled coil , 1992, The Journal of cell biology.

[92]  G. Bloom,et al.  Molecular genetics of kinesin light chains: generation of isoforms by alternative splicing. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[93]  D. Hall,et al.  Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans , 1991, Cell.

[94]  Russell J. Stewart,et al.  The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor , 1990, Cell.

[95]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[96]  Edward D. Salmon,et al.  The Drosophila claret segregation protein is a minus-end directed motor molecule , 1990, Nature.

[97]  R. Hawley,et al.  A kinesin-like protein required for distributive chromosome segregation in Drosophila , 1990, Cell.

[98]  E. Raff,et al.  Evidence that the head of kinesin is sufficient for force generation and motility in vitro. , 1990, Science.

[99]  P. Meluh,et al.  KAR3, a kinesin-related gene required for yeast nuclear fusion , 1990, Cell.

[100]  N. Morris,et al.  Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans , 1990, Cell.

[101]  A. Hudspeth,et al.  Movement of microtubules by single kinesin molecules , 1989, Nature.

[102]  R. A. Laymon,et al.  A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses , 1989, Cell.

[103]  G. Bloom,et al.  Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration , 1989, Cell.

[104]  G. Bloom,et al.  Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide. , 1988, Biochemistry.

[105]  E. Vaisberg,et al.  The quaternary structure of bovine brain kinesin. , 1988, The EMBO journal.

[106]  R. Vale,et al.  Intracellular transport using microtubule-based motors. , 1987, Annual review of cell biology.