Ghost imaging for an axially moving target with an unknown constant speed

The influence of the axial relative motion between the target and the source on ghost imaging (GI) is investigated. Both the analytical and experimental results show that the transverse resolution of GI is reduced as the deviation of the target’s center position from the optical axis or the axial motion range increases. To overcome the motion blur, we propose a deblurring method based on speckle-resizing and speed retrieval, and we experimentally validate its effectiveness for an axially moving target with an unknown constant speed. The results demonstrated here will be very useful to forward-looking GI remote sensing.

[1]  Wenlin Gong,et al.  The influence of axial correlation depth of light field on lensless ghost imaging , 2010 .

[2]  Wenlin Gong,et al.  Correlated imaging through atmospheric turbulence , 2010, 1005.5011.

[3]  Guihua Zeng,et al.  Lensless ghost imaging for moving objects , 2011 .

[4]  J. Shapiro,et al.  Reflective ghost imaging through turbulence , 2011, 1110.0845.

[5]  J. Shapiro,et al.  Ghost imaging: from quantum to classical to computational , 2010 .

[6]  De-Zhong Cao,et al.  Geometrical optics in correlated imaging systems , 2004, quant-ph/0407065.

[7]  Y. Shih,et al.  Turbulence-free ghost imaging , 2011 .

[8]  A. Gatti,et al.  Ghost imaging with thermal light: comparing entanglement and classical correlation. , 2003, Physical review letters.

[9]  Wenlin Gong,et al.  Ghost imaging lidar via sparsity constraints , 2012, 1203.3835.

[10]  Enrong Li,et al.  Ghost imaging of a moving target with an unknown constant speed , 2014 .

[11]  Yanhua Shih,et al.  Quantum imaging , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[12]  D. Klyshko Photons Nonlinear Optics , 1988 .

[13]  Ling-An Wu,et al.  Correlated two-photon imaging with true thermal light. , 2005, Optics letters.

[14]  O. Katz,et al.  Ghost imaging with a single detector , 2008, 0812.2633.

[15]  Y. Shih Quantum Imaging , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Jeffrey H. Shapiro,et al.  The physics of ghost imaging , 2012, Quantum Information Processing.

[17]  J. Shapiro,et al.  Computational ghost imaging versus imaging laser radar for three-dimensional imaging , 2012, 1212.3253.

[18]  Wenlin Gong,et al.  Correlated imaging in scattering media. , 2009, Optics letters.

[19]  Wenlin Gong,et al.  Ghost Imaging Lidar via Sparsity Constraints in Real Atmosphere , 2013 .

[20]  Wenlin Gong,et al.  Three-dimensional ghost imaging lidar via sparsity constraint , 2013, Scientific Reports.

[21]  Wenlin Gong,et al.  High-resolution far-field ghost imaging via sparsity constraint , 2015, Scientific Reports.

[22]  M. Padgett,et al.  Fast full-color computational imaging with single-pixel detectors. , 2013, Optics express.

[23]  Wenlin Gong,et al.  Ghost “pinhole” imaging in Fraunhofer region , 2009 .

[24]  Shensheng Han,et al.  Incoherent coincidence imaging and its applicability in X-ray diffraction. , 2004, Physical review letters.

[25]  Wenlin Gong,et al.  Correlated imaging in scattering media. , 2011, Optics letters.

[26]  Wenlin Gong,et al.  Super-resolution far-field ghost imaging via compressive sampling , 2009, 0911.4750.

[27]  Wenlin Gong,et al.  Improving imaging resolution of shaking targets by Fourier-transform ghost diffraction , 2012, 1207.6201.

[28]  龚文林 Gong Wenlin,et al.  Ghost Imaging for Moving Targets and Its Application in Remote Sensing , 2012 .

[29]  Jing Cheng Ghost imaging through turbulent atmosphere. , 2009, Optics express.

[30]  Wenlin Gong,et al.  Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints , 2012 .

[31]  B. Erkmen Computational ghost imaging for remote sensing. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  A. Gatti,et al.  Coherent imaging with pseudo-thermal incoherent light , 2005, quant-ph/0504082.