Expression of the diguanylate cyclase GcbA is regulated by FleQ in response to cyclic di-GMP in Pseudomonas putida KT2440.

Cyclic di-GMP (c-di-GMP), a ubiquitous bacterial second messenger that regulates diverse cellular processes, is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). GcbA is a well conserved DGC among Pseudomonas species, and has been reported to influence biofilm formation and flagellar motility in Pseudomonas fluorescens and Pseudomonas aeruginosa. Here we confirm the function of GcbA in Pseudomonas putida and reveal that expression of GcbA is regulated by FleQ in response to c-di-GMP. GcbA deletion impaired initial biofilm formation and enhanced swimming motility, but showed no influence on biofilm maturation in Pseudomonas putida. Deletion of the c-di-GMP effector FleQ led to a significant decrease in transcription of gcbA. Moreover, reducing c-di-GMP levels promoted gcbA transcription in a FleQ dependent way, while enhancing c-di-GMP levels abolished the promotion. In in vitro experiments we found that FleQ bound to gcbA promoter DNA and the binding was inhibited by c-di-GMP. Besides, FleN, an anti-activator of FleQ, and the sigma factor RpoN also participated in transcription of gcbA. Our finding expands the complexity of FleQ-dependent regulation and reveals a self-regulation function of c-di-GMP by regulating GcbA expression via FleQ.

[1]  Q. Huang,et al.  C-di-GMP regulates the expression of lapA and bcs operons via FleQ in Pseudomonas putida KT2440. , 2016, Environmental microbiology reports.

[2]  C. Harwood,et al.  FleQ DNA Binding Consensus Sequence Revealed by Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in Pseudomonas aeruginosa , 2015, Journal of bacteriology.

[3]  H. Sondermann,et al.  Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa , 2015, Proceedings of the National Academy of Sciences.

[4]  K. Sauer,et al.  The Diguanylate Cyclase GcbA Facilitates Pseudomonas aeruginosa Biofilm Dispersion by Activating BdlA , 2014, Journal of bacteriology.

[5]  K. Sauer,et al.  The Pseudomonas aeruginosa Diguanylate Cyclase GcbA, a Homolog of P. fluorescens GcbA, Promotes Initial Attachment to Surfaces, but Not Biofilm Formation, via Regulation of Motility , 2014, Journal of bacteriology.

[6]  M. Ramos-González,et al.  Roles of Cyclic Di-GMP and the Gac System in Transcriptional Control of the Genes Coding for the Pseudomonas putida Adhesins LapA and LapF , 2014, Journal of bacteriology.

[7]  C. Harwood,et al.  Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ , 2013, Proceedings of the National Academy of Sciences.

[8]  Michael Y. Galperin,et al.  Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger , 2013, Microbiology and Molecular Reviews.

[9]  Yasuhiko Irie,et al.  Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa , 2012, Proceedings of the National Academy of Sciences.

[10]  Paul A. Wiggins,et al.  Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory‐like system leading to c‐di‐GMP production , 2012, Molecular microbiology.

[11]  K. Sauer,et al.  Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA , 2012, Proceedings of the National Academy of Sciences.

[12]  C. Waters,et al.  Quantification of high-specificity cyclic diguanylate signaling , 2012, Proceedings of the National Academy of Sciences.

[13]  T. Tolker-Nielsen,et al.  Fluorescence-Based Reporter for Gauging Cyclic Di-GMP Levels in Pseudomonas aeruginosa , 2012, Applied and Environmental Microbiology.

[14]  M. Parsek,et al.  The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP , 2012, Nucleic acids research.

[15]  P. Williams,et al.  The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. , 2011, Environmental microbiology.

[16]  Tania A Baker,et al.  Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. , 2011, Molecular cell.

[17]  Peter D. Newell,et al.  Systematic Analysis of Diguanylate Cyclases That Promote Biofilm Formation by Pseudomonas fluorescens Pf0-1 , 2011, Journal of bacteriology.

[18]  J. Ramos,et al.  Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. , 2011, Environmental microbiology.

[19]  M. Gilles-Gonzalez,et al.  Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. , 2011, Journal of molecular biology.

[20]  Peter D. Newell,et al.  Structural Basis for c-di-GMP-Mediated Inside-Out Signaling Controlling Periplasmic Proteolysis , 2011, PLoS biology.

[21]  Peter D. Newell,et al.  A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage , 2011, PLoS biology.

[22]  Zasha Weinberg,et al.  An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger , 2010, Science.

[23]  Matthias Christen,et al.  Asymmetrical Distribution of the Second Messenger c-di-GMP upon Bacterial Cell Division , 2010, Science.

[24]  D. Blair,et al.  The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. , 2010, Molecular cell.

[25]  R. Samudrala,et al.  Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix , 2010, Molecular microbiology.

[26]  R. Geffers,et al.  SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. , 2009, Environmental microbiology.

[27]  M. Alam,et al.  An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. , 2009, Biochemistry.

[28]  Matthew R. Parsek,et al.  Pseudomonas aeruginosa Rugose Small-Colony Variants Have Adaptations That Likely Promote Persistence in the Cystic Fibrosis Lung , 2009, Journal of bacteriology.

[29]  Peter D. Newell,et al.  LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0–1 , 2009, Proceedings of the National Academy of Sciences.

[30]  J. W. Golden,et al.  The Anabaena sp. Strain PCC 7120 Gene all2874 Encodes a Diguanylate Cyclase and Is Required for Normal Heterocyst Development under High-Light Growth Conditions , 2008, Journal of bacteriology.

[31]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[32]  C. Harwood,et al.  Identification of FleQ from Pseudomonas aeruginosa as a c‐di‐GMP‐responsive transcription factor , 2008, Molecular microbiology.

[33]  A. Wolfe,et al.  Get the Message Out: Cyclic-Di-GMP Regulates Multiple Levels of Flagellum-Based Motility , 2007, Journal of bacteriology.

[34]  C. Harwood,et al.  Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic‐di‐GMP in response to growth on surfaces , 2007, Molecular microbiology.

[35]  D. Hassett,et al.  BdlA, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[36]  Daniel G. Lee,et al.  Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Camilli,et al.  Cyclic Diguanylate Regulates Vibrio cholerae Virulence Gene Expression , 2005, Infection and Immunity.

[39]  S. Molin,et al.  Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. , 2005, Environmental microbiology.

[40]  U. Römling,et al.  GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility , 2004, Molecular microbiology.

[41]  A. Camilli,et al.  Cyclic diguanylate (c‐di‐GMP) regulates Vibrio cholerae biofilm formation , 2004, Molecular microbiology.

[42]  Stephen Lory,et al.  A four‐tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa , 2003, Molecular microbiology.

[43]  Patrick Goymer,et al.  Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus , 2003, Molecular microbiology.

[44]  R. Ramphal,et al.  FleQ, the Major Flagellar Gene Regulator in Pseudomonas aeruginosa, Binds to Enhancer Sites Located Either Upstream or Atypically Downstream of the RpoN Binding Site , 2002, Journal of bacteriology.

[45]  R. Ramphal,et al.  Interaction of the Antiactivator FleN with the Transcriptional Activator FleQ Regulates Flagellar Number inPseudomonas aeruginosa , 2001, Journal of bacteriology.

[46]  R. Ramphal,et al.  fleN, a Gene That Regulates Flagellar Number in Pseudomonas aeruginosa , 2000, Journal of bacteriology.

[47]  S. Lory,et al.  A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner , 1997, Journal of bacteriology.