An Optimization Framework for the Adaptive Design of Robust Choice Questionnaires

We propose a general framework for adaptively designing choice-based conjoint questionnaires at the individual level. This framework uses complexity control to improve the robustness of the conjoint designs to response error and links the informativeness of conjoint questions to the Hessian of the loss function minimized in partworth estimation. It formalizes and generalizes several methods recently proposed both for questionnaire design and estimation. Simulations as well as an online experiment suggest that it outperforms established benchmarks, especially when response error is high.

[1]  M. F. Luce,et al.  Constructive Consumer Choice Processes , 1998 .

[2]  John R. Hauser,et al.  Greedoid-Based Non-compensatory Consideration-then-Choice Inference , 2005 .

[3]  Greg M. Allenby,et al.  A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules , 2004 .

[4]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[5]  Allan D. Shocker,et al.  Linear programming techniques for multidimensional analysis of preferences , 1973 .

[6]  G. Tellis,et al.  Research on Innovation: A Review and Agenda for Marketing Science , 2006 .

[7]  Michel Wedel,et al.  Representing heterogeneity in consumer response models , 1997 .

[8]  Rick L. Andrews,et al.  Hierarchical Bayes versus Finite Mixture Conjoint Analysis Models: A Comparison of Fit, Prediction, and Partworth Recovery , 2002 .

[9]  Joel Huber,et al.  Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments , 2001 .

[10]  Greg M. Allenby,et al.  A Hierarchical Bayes Model of Primary and Secondary Demand , 1998 .

[11]  Paul E. Green,et al.  Robustness of Conjoint Analysis: Some Monté Carlo Results , 1978 .

[12]  John R. Hauser,et al.  Fast Polyhedral Adaptive Conjoint Estimation , 2002 .

[13]  Joel Huber,et al.  The Importance of Utility Balance in Efficient Choice Designs , 1996 .

[14]  Giorgos Zacharia,et al.  Generalized robust conjoint estimation , 2005 .

[15]  Peter E. Rossi,et al.  Marketing models of consumer heterogeneity , 1998 .

[16]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[17]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[18]  Eric J. Johnson,et al.  Adaptive Strategy Selection in Decision Making. , 1988 .

[19]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[20]  P. Lenk,et al.  Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs , 1996 .

[21]  M. Wedel,et al.  Designing Conjoint Choice Experiments Using Managers' Prior Beliefs , 2001 .

[22]  Bernhard Schölkopf,et al.  Incorporating Invariances in Support Vector Learning Machines , 1996, ICANN.

[23]  John R. Hauser,et al.  Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis , 2004 .

[24]  Eric J. Johnson,et al.  The adaptive decision maker , 1993 .

[25]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[26]  Barbara Kanninen,et al.  Optimal Design for Multinomial Choice Experiments , 2002 .

[27]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[28]  R. Kohli,et al.  Representation and Inference of Lexicographic Preference Models and Their Variants , 2007 .

[29]  Greg M. Allenby,et al.  On the Heterogeneity of Demand , 1998 .

[30]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .