A Dynamic Load Balancing Technique for Parallel Execution of Structured Grid Models

Partitioning computational load over different processing elements is a crucial issue in parallel computing. This is particularly relevant in the case of parallel execution of structured grid computational models, such as Cellular Automata (CA), where the domain space is partitioned in regions assigned to the parallel computing nodes. In this work, we present a dynamic load balancing technique that provides for performance improvements in structured grid model execution on distributed memory architectures. First tests implemented using the MPI technology have shown the goodness of the proposed technique in sensibly reducing execution times with respect to not-balanced parallel versions.

[1]  Danesh K. Tafti,et al.  Efficient parallel CFD-DEM simulations using OpenMP , 2014, J. Comput. Phys..

[2]  Bengt Andersson,et al.  Computational Fluid Dynamics for Engineers , 2011 .

[3]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[4]  Arjen Schoneveld,et al.  P-CAM: a framework for parallel complex systems simulations , 1999, Future Gener. Comput. Syst..

[5]  Franco Cicirelli,et al.  Parallelization of space-aware applications: Modeling and performance analysis , 2018, J. Netw. Comput. Appl..

[6]  Piero Procacci,et al.  Hybrid MPI/OpenMP Implementation of the ORAC Molecular Dynamics Program for Generalized Ensemble and Fast Switching Alchemical Simulations , 2016, J. Chem. Inf. Model..

[7]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[8]  Neil D. Sandham,et al.  Block-structured compressible Navier–Stokes solution using the OPS high-level abstraction , 2016 .

[9]  Rocco Rongo,et al.  OpenMP parallelization of the SCIARA Cellular Automata lava flow model: performance analysis on shared-memory computers , 2011, ICCS.

[10]  S. Ninagawa Dynamics of universal computation and 1/f noise in elementary cellular automata , 2015 .

[11]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[12]  Jakub Gasior,et al.  A Cellular Automata-Like Scheduler and Load Balancer , 2016, ACRI.

[13]  Giandomenico Spezzano,et al.  A model based on cellular automata for the parallel simulation of 3D unsaturated flow , 2006, Parallel Comput..

[14]  Giuseppe A. Trunfio,et al.  Accelerating wildfire susceptibility mapping through GPGPU , 2013, J. Parallel Distributed Comput..

[15]  R. Rongo,et al.  Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios , 2000 .

[16]  Rocco Rongo,et al.  A Dynamically Load Balanced Cellular Automata Library for Scientific Computing , 2009, CSC.

[17]  Rocco Rongo,et al.  A Parallel Cellular Automata Environment on Multicomputers for Computational Science , 1995, Parallel Comput..

[18]  Georgios Ch. Sirakoulis,et al.  Accelerating fuzzy cellular automata for modeling crowd dynamics , 2019, J. Comput. Sci..

[19]  Joel H. Saltz,et al.  An Anlysis of Scatter Decomposition , 1990, IEEE Trans. Computers.

[20]  Georgios Ch. Sirakoulis,et al.  Parallel fuzzy cellular automata for data-driven simulation of wildfire spreading , 2017, J. Comput. Sci..

[21]  Davide Marocco,et al.  Morphological Coevolution for Fluid Dynamical-Related Risk Mitigation , 2016, ACM Trans. Model. Comput. Simul..

[22]  Rocco Rongo,et al.  The new SCIARA-fv3 numerical model and acceleration by GPGPU strategies , 2017, Int. J. High Perform. Comput. Appl..

[23]  Bengt Andersson,et al.  Computational Fluid Dynamics for Engineers by Bengt Andersson , 2011 .

[24]  Rocco Rongo,et al.  Strategies for Parallel Execution of Cellular Automata in Distributed Memory Architectures , 2019, 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP).

[25]  Christophe Renaud,et al.  An Out-of-Core Method for Physical Simulations on a Multi-GPU Architecture Using Lattice Boltzmann Method , 2016, 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld).

[26]  William Spataro,et al.  A first multi-GPU/multi-node implementation of the open computing abstraction layer , 2019, J. Comput. Sci..

[27]  Jaroslaw Was,et al.  GPGPU Computing for Microscopic Simulations of Crowd Dynamics , 2015, Comput. Informatics.

[28]  Carlo Mastroianni,et al.  Parallel Execution of Cellular Automata through Space Partitioning: The Landslide Simulation Sciddicas3-Hex Case Study , 2017, 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP).

[29]  A. Senatore,et al.  Coupled Vegetation and Soil Moisture Dynamics Modeling in Heterogeneous and Sloping Terrains , 2011 .

[30]  Rocco Rongo,et al.  High performance scientific computing by a parallel cellular environment , 1997, Future Gener. Comput. Syst..

[31]  G. Mendicino,et al.  A coupled ecohydrological–three‐dimensional unsaturated flow model describing energy, H2O and CO2 fluxes , 2010 .

[32]  Paul H. J. Kelly,et al.  Acceleration of a Full-Scale Industrial CFD Application with OP2 , 2014, IEEE Transactions on Parallel and Distributed Systems.

[33]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[34]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[35]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[36]  Rocco Rongo,et al.  Integrating geomorphology, statistic and numerical simulations for landslide invasion hazard scenarios mapping: An example in the Sorrento Peninsula (Italy) , 2014, Comput. Geosci..

[37]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[38]  Rocco Rongo,et al.  The Open Computing Abstraction Layer for Parallel Complex Systems Modeling on Many-Core Systems , 2018, J. Parallel Distributed Comput..