Fullerene‐Acetylene Molecular Scaffolding: Chemistry of 2‐functionalized 1‐ethynylated C60, oxidative homocoupling, hexakis‐adduct formation, and attempted synthesis of C 1242−

On the way to the fullerene-acetylene hybrid carbon allotropes 2 and 6, the oxidative homocoupling of the 2-functionalized 1-ethynylated C60 derivatives 11, 12, 14, and 15 was investigated. Under Glaser-Hay conditions, the two soluble dumbbell-shaped bisfullerenes 17 and 18, with two C60 moieties linked by a buta-1,3-diynediyl bridge, were formed in 52 and 82% yield, respectively (Scheme 2). Cyclic-voltammetric measurements revealed that there is no significant electronic communication between the two fullerene spheres via the buta-1,3-diynediyl linker. Removal of the 3,4,5,6-tetrahydro-2H-pyran-2-yl (Thp) protecting groups in 18 gave in 80% yield the highly insoluble dumbbell 19 with methanol groups in the 2,2′-positions of the buta-1,3-diynediyl-bridged carbon spheres. Attempted conversion of 19 to the all-carbon dianion 6 (C) via base-induced elimination of formaldehyde was not successful presumably due to exo-dig cyclization of the formed alkoxides. The occurrence of this cyclization under furan formation was proven for 2-[4-(trimethylsilyl)buta-1,3-diyn-1-yl][60]fullerene-1-methanol (21), a soluble model compound for 19 (Scheme 3). To compare the properties of ethynylated fullerene mono-adducts to those of corresponding higher adducts, hexakis-adducts 26 and 28 with an octahedral functionalization pattern resulting from all-e (equatorial) additions were prepared by the reversible-template method of Hirsch (Scheme 4). Reaction of the ethynylated mono-adducts 25 or 13 with diethyl 2-bromomalonate/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the presence of 1,9-dimethylanthracene (DMA) as reversible template led to 26 and 28 in 28 and 22% yield, respectively. Preliminary experiments indicated a significant change in reactivity and NMR spectral properties of the fullerene addends with increasing degree of functionalization.

[1]  B. Chait,et al.  Synthesis of oxo- and methylene-bridged C60 dimers, the first well-characterized species containing fullerene-fullerene bonds. , 1995 .

[2]  F. Diederich,et al.  A New Family of Chiral Binaphthyl‐Derived Cyclophane Receptors: Complexation of Pyranosides , 1995 .

[3]  Andreas Hirsch,et al.  Reversible Template‐Directed Activation of Equatorial Double Bonds of the Fullerene Framework: Regioselective Direct Synthesis, Crystal Structure, and Aromatic Properties of Th‐C66(COOEt)12 , 1995 .

[4]  F. Diederich,et al.  Electrochemistry of Mono‐ through Hexakis‐adducts of C60 , 1995 .

[5]  S. Anderson,et al.  Eine neue Klasse chiraler, von 1,1′‐Binaphthyl abgeleiteter Cyclophan‐Rezeptoren: Komplexierung von Pyranosiden , 1995 .

[6]  A. Hirsch,et al.  Reversible Templataktivierung äquatorialer Doppelbindungen des C60‐Gerüstes: regioselektive Direktsynthese, Struktur und aromatische Eigenschaften von Th‐C66 (COOEt)12 , 1995 .

[7]  F. Diederich,et al.  Solubilized Derivatives of C195 and C260: The First Members of a New Class of Carbon Allotropes Cn(60 + 5) , 1995 .

[8]  W. Krätschmer,et al.  Synthesis of C120O: A new dimeric [60]fullerene derivative , 1995 .

[9]  P. Seiler,et al.  Lösliche Derivate von C195 und C260: die ersten Verbindungen einer neuen Klasse von Kohlenstoffallotropen Cn(60 + 5) , 1995 .

[10]  R. J. Graham,et al.  Controlled Spacing of 60-Carbon Spheres with 1,4-Cyclohexadienyl Ladders by Pairwise Diels-Alder Cycloaddition to Buckminsterfullerene , 1995 .

[11]  L. T. Scott,et al.  Completely Spirocyclopropanated Macrocyclic Oligodiacetylenes: The Family of “Exploding” [n]Rotanes†‡ , 1995 .

[12]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[13]  Stephen R. Wilson,et al.  Methanofullerenes and Methanofulleroids Have Different Electrochemical Behavior at Negative Potentials , 1995 .

[14]  J. H. Malpert,et al.  Conjugate addition reactions of metallated alkyl pyridines. A direct route to 6-substituted pyridones , 1995 .

[15]  B. Kräutler,et al.  A Highly Symmetric Sixfold Cycloaddition Product of Fullerene C60 , 1995 .

[16]  Bernhard Kräutler,et al.  Ein hochsymmetrisches Produkt einer sechsfachen [4 + 2]‐Cycloaddition des C60‐Fullerens , 1995 .

[17]  K. Müllen,et al.  Covalent attachment of various substituents in closest proximity to the C60-core: A broad synthetic approach to stable fullerene derivatives , 1995 .

[18]  F. Diederich,et al.  Tether-Directed Remote Functionalization of Buckminsterfullerene: Regiospecific Hexaadduct Formation† , 1994 .

[19]  François Diederich,et al.  Spacer‐kontrollierte Fernfunktionalisierung von Buckminsterfulleren: regiospezifische Bildung eines Hexaadduktes , 1994 .

[20]  L. T. Scott,et al.  Enhancement of Through-Space and Through-Bond .pi.-Orbital Interactions. Syntheses and Properties of Permethylated and Perspirocyclopropanated Cyclotetradeca-1,3,6,9,12-pentayne , 1994 .

[21]  A. Hirsch,et al.  Regiochemistry of Multiple Additions to the Fullerene Core: Synthesis of a Th-Symmetric Hexakis adduct of C60 with Bis(ethoxycarbonyl)methylene , 1994 .

[22]  Y. Murata,et al.  Synthesis and Properties of the First Acetylene Derivatives of C60 , 1994 .

[23]  F. Diederich,et al.  61,61‐Bis(trimethylsilylbutadiynyl)‐1,2‐dihydro‐1,2‐methanofullerene[60]: Crystal Structure at 100 K and Electrochemical Conversion to a Conducting Polymer , 1994 .

[24]  F. Diederich,et al.  61,61-Bis(trimethylsilylbutadiinyl)-1,2-dihydro-1,2-methanofulleren[60]: Kristallstruktur bei 100 K und elektrochemische Umwandlung in ein leitfähiges Polymer† , 1994 .

[25]  F. Diederich,et al.  Synthetic routes to the cyclo[n]carbons , 1994 .

[26]  F. Diederich,et al.  Fullerene–Acetylene Hybrids: On the Way to Synthetic Molecular Carbon Allotropes , 1994 .

[27]  H. L. Anderson,et al.  Fulleren‐Acetylen‐Hybride: auf dem Weg zu neuen, synthetischen molekularen Kohlenstoffallotropen , 1994 .

[28]  Y. Rubin,et al.  Synthesis and characterization of diethynylmethanobuckminsterfullerene, a building block for macrocyclic and polymeric carbon allotropes , 1994 .

[29]  L. T. Scott,et al.  Hexaspiro[2.4.2.4.2.4.2.4.2.4.2.4]dotetraconta‐4,6,11,13,18,20,25,27,32,34,39,41‐dodecayne An Exploding [6]Rotane , 1994 .

[30]  François Diederich,et al.  Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds , 1994, Nature.

[31]  A. D. Meijere,et al.  HEXASPIRO2.4.2.4.2.4.2.4.2.4.2.4DOTETRACONTA-4,6,11,13,18,20,25,27,32,34,39,41-DODECAIN : EIN EXPLODIERENDES 6ROTAN , 1994 .

[32]  R C Haddon,et al.  Chemistry of the Fullerenes: The Manifestation of Strain in a Class of Continuous Aromatic Molecules , 1993, Science.

[33]  Carsten Bingel,et al.  Cyclopropanierung von Fullerenen , 1993 .

[34]  M. Prato,et al.  Chemical derivatization of organofullerenes through oxidation, reduction, and carbon-oxygen and carbon-carbon bond-forming reactions , 1993 .

[35]  F. Diederich,et al.  Improved purification of C60 and formation of σ- and π-homoaromatic methano-bridged fullerenes by reaction with alkyl diazoacetates , 1993 .

[36]  K. Müllen,et al.  Reaction of Buckminsterfullerene with ortho‐Quinodimethane: a New Access to Stable C60 Derivatives , 1993 .

[37]  Klaus Müllen,et al.  Umsetzung von Buckminsterfulleren C60 mit ortho-Chinodimethan: ein neuer Zugang zu stabilen C60-Derivaten† , 1993 .

[38]  E. Johnston,et al.  Synthesis, chemistry, and properties of a monoalkylated buckminsterfullerene derivative, tert-BuC60 anion , 1992 .

[39]  François Diederich,et al.  Synthetic approaches toward molecular and polymeric carbon allotropes , 1992 .

[40]  Y. Rubin,et al.  Strategien zum Aufbau molekularer und polymerer Kohlenstoffallotrope , 1992 .

[41]  F. Wudl,et al.  Synthesis of m-phenylene- and p-phenylenebis(phenylfulleroids): two-pearl sections of pearl necklace polymers , 1992 .

[42]  P. Fagan,et al.  A multiply-substituted buckminsterfullerene (C60) with an octahedral array of platinum atoms , 1991 .

[43]  A. Bard,et al.  Electron transfer to and from molecules containing multiple, noninteracting redox centers. Electrochemical oxidation of poly(vinylferrocene) , 1978 .

[44]  M. Miyashita,et al.  Pyridinium p-toluenesulfonate. A mild and efficient catalyst for the tetrahydropyranylation of alcohols , 1977 .

[45]  Jean-Michel Savéant,et al.  Convolution potential sweep voltammetryII. Multistep nernstian waves , 1973 .

[46]  D. C. Owsley,et al.  Indoles, Benzofurans, Phthalides, and Tolanes via Copper(I) Acetylides , 1966 .

[47]  A. S. Hay Oxidative Coupling of Acetylenes. II1 , 1962 .