Least-squares Solutions of Linear Differential Equations
暂无分享,去创建一个
[1] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[2] James D. Turner,et al. State Transition Matrix for Perturbed Orbital Motion Using Modified Chebyshev Picard Iteration , 2015, The Journal of the astronautical sciences.
[3] Youdong Lin,et al. Enclosing all solutions of two-point boundary value problems for ODEs , 2008, Comput. Chem. Eng..
[4] Kenneth Wright,et al. Chebyshev Collocation Methods for Ordinary Differential Equations , 1964, Comput. J..
[5] John L. Junkins,et al. Picard Iteration, Chebyshev Polynomials and Chebyshev-Picard Methods: Application in Astrodynamics , 2013, The Journal of the Astronautical Sciences.
[6] Differential Equations and Linear Algebra , 2014 .
[7] D. Mortari. Least-Squares Solution of Linear Differential Equations , 2017 .
[8] Matthew M. Berry,et al. Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .
[9] E. Mathieu. Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique. , 1868 .
[10] Thomas W. Sederberg,et al. Least squares methods for solving differential equations using Bézier control points , 2004 .
[11] Ali H. Bhrawy,et al. On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations , 2011 .
[12] John L. Junkins,et al. Modified Chebyshev-Picard Iteration Methods for Orbit Propagation , 2011 .
[13] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[14] D. Mortari. The Theory of Connections. Connecting Points , 2017, 1702.06862.
[15] J. Michopoulos,et al. EXPLICIT SOLUTIONS FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS USING BEZIER FUNCTIONS , 2006 .
[16] J. Meixner,et al. Mathieusche Funktionen und Sphäroidfunktionen , 1954 .
[17] S. Somali,et al. Least squares methods for solving singularly perturbed two-point boundary value problems using Bézier control points , 2008, Appl. Math. Lett..
[18] Satya N. Atluri,et al. Time Domain Inverse Problems in Nonlinear Systems Using Collocation & Radial Basis Functions , 2014 .
[20] L. Trefethen,et al. Chebfun: A New Kind of Numerical Computing , 2010 .