Algorithmic Properties of Sparse Digraphs

The notions of bounded expansion and nowhere denseness have been applied very successfully in algorithmic graph theory. We study the corresponding notions of directed bounded expansion and nowhere crownfulness on directed graphs. We show that many of the algorithmic tools that were developed for undirected bounded expansion classes can, with some care, also be applied in their directed counterparts, and thereby we highlight a rich algorithmic structure theory of directed bounded expansion classes. More specifically, we show that the directed Steiner tree problem is fixed-parameter tractable on any class of directed bounded expansion parameterized by the number $k$ of non-terminals plus the maximal diameter $s$ of a strongly connected component in the subgraph induced by the terminals. Our result strongly generalizes a result of Jones et al., who proved that the problem is fixed parameter tractable on digraphs of bounded degeneracy if the set of terminals is required to be acyclic. We furthermore prove that for every integer $r\geq 1$, the distance-$r$ dominating set problem can be approximated up to a factor $O(\log k)$ and the connected distance-$r$ dominating set problem can be approximated up to a factor $O(k\cdot \log k)$ on any class of directed bounded expansion, where $k$ denotes the size of an optimal solution. If furthermore, the class is nowhere crownful, we are able to compute a polynomial kernel for distance-$r$ dominating sets. Polynomial kernels for this problem were not known to exist on any other existing digraph measure for sparse classes.

[1]  János Barát Directed Path-width and Monotonicity in Digraph Searching , 2006, Graphs Comb..

[2]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[3]  Saket Saurabh,et al.  Parameterized Complexity of Directed Steiner Tree on Sparse Graphs , 2012, SIAM J. Discret. Math..

[4]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[5]  Kent Quanrud,et al.  Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs , 2015, ESA.

[6]  Geevarghese Philip,et al.  Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond , 2012, TALG.

[7]  ThomasRobin,et al.  Testing first-order properties for subclasses of sparse graphs , 2013 .

[8]  Stephan Kreutzer,et al.  Kernelization and Sparseness: the case of Dominating Set , 2014, STACS.

[9]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[10]  Dimitrios M. Thilikos,et al.  Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs , 2012, STACS.

[11]  Sebastian Siebertz,et al.  Reconfiguration on nowhere dense graph classes , 2017, Electron. J. Comb..

[12]  Jakub Gajarský,et al.  Kernelization Using Structural Parameters on Sparse Graph Classes , 2013, ESA.

[13]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[14]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[15]  Marcin Pilipczuk,et al.  Empirical Evaluation of Approximation Algorithms for Generalized Graph Coloring and Uniform Quasi-wideness , 2018, SEA.

[16]  Mohammad Ali Safari D-Width: A More Natural Measure for Directed Tree Width , 2005, MFCS.

[17]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems , 2009, ICALP.

[18]  Jan Obdrzálek,et al.  DAG-width: connectivity measure for directed graphs , 2006, SODA '06.

[19]  Alexandre Vigny,et al.  Constant Delay Enumeration for FO Queries over Databases with Local Bounded Expansion , 2017, ICDT.

[20]  Dimitrios M. Thilikos,et al.  Linear kernels for (connected) dominating set on H-minor-free graphs , 2012, SODA.

[21]  Erik D. Demaine,et al.  Bidimensionality: new connections between FPT algorithms and PTASs , 2005, SODA '05.

[22]  Robin Thomas,et al.  Testing first-order properties for subclasses of sparse graphs , 2011, JACM.

[23]  Michal Pilipczuk,et al.  Progressive Algorithms for Domination and Independence , 2018, STACS.

[24]  J. Nesetril,et al.  Grad and classes with bounded expansion III. restricted dualities , 2005, math/0508325.

[25]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[26]  Erik D. Demaine,et al.  Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth , 2004, GD.

[27]  Jaroslav Nesetril,et al.  Linear time low tree-width partitions and algorithmic consequences , 2006, STOC '06.

[28]  Hans Adler,et al.  Interpreting nowhere dense graph classes as a classical notion of model theory , 2014, Eur. J. Comb..

[29]  Jaroslav Nesetril,et al.  First order properties on nowhere dense structures , 2010, The Journal of Symbolic Logic.

[30]  Shi Li,et al.  A Polylogarithmic Approximation Algorithm for Edge-Disjoint Paths with Congestion 2 , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[31]  Zdenek Dvorak,et al.  Constant-factor approximation of domination number in sparse graphs , 2011, ArXiv.

[32]  Martin Grohe Local Tree-Width, Excluded Minors, and Approximation Algorithms , 2003, Comb..

[33]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[34]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[35]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[36]  Fahad Panolan,et al.  Reconfiguration on Sparse Graphs , 2015, WADS.

[37]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[38]  Stephan Kreutzer,et al.  Digraph measures: Kelly decompositions, games, and orderings , 2007, SODA '07.

[39]  Stephan Kreutzer,et al.  DAG-Width and Parity Games , 2006, STACS.

[40]  Patrice Ossona de Mendez,et al.  Distributed Domination on Graph Classes of Bounded Expansion , 2017, SPAA.

[41]  Ken-ichi Kawarabayashi,et al.  Algorithmic graph minor theory: Decomposition, approximation, and coloring , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[42]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[43]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[44]  Stephan Kreutzer,et al.  Domination Problems in Nowhere-Dense Classes , 2009, FSTTCS.

[45]  Stephan Kreutzer,et al.  Structural Properties and Constant Factor-Approximation of Strong Distance-r Dominating Sets in Sparse Directed Graphs , 2017, STACS.

[46]  Hal A. Kierstead,et al.  Orderings on Graphs and Game Coloring Number , 2003, Order.

[47]  Stephan Kreutzer,et al.  Colouring and Covering Nowhere Dense Graphs , 2015, WG.

[48]  Michal Pilipczuk,et al.  Kernelization and approximation of distance-r independent sets on nowhere dense graphs , 2018, ArXiv.

[49]  Bruce A. Reed,et al.  The disjoint paths problem in quadratic time , 2012, J. Comb. Theory, Ser. B.

[50]  Zdenvek Dvovr'ak On distance r-dominating and 2r-independent sets in sparse graphs , 2017 .

[51]  Robert Ganian,et al.  On Digraph Width Measures in Parameterized Algorithmics , 2009, IWPEC.

[52]  P. Erdös,et al.  A combinatorial theorem , 1950 .

[53]  Stephan Kreutzer,et al.  Approximation Schemes for First-Order Definable Optimisation Problems , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[54]  Xuding Zhu,et al.  Colouring graphs with bounded generalized colouring number , 2009, Discret. Math..

[55]  Stephan Kreutzer,et al.  Neighborhood complexity and kernelization for nowhere dense classes of graphs , 2016, ICALP.

[56]  Blair D. Sullivan,et al.  Structural Sparsity of Complex Networks: Random Graph Models and Linear Algorithms , 2014, ArXiv.

[57]  Stephan Kreutzer,et al.  Polynomial Kernels and Wideness Properties of Nowhere Dense Graph Classes , 2016, SODA.

[58]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[59]  H. Prömel,et al.  The Steiner Tree Problem: A Tour through Graphs, Algorithms, and Complexity , 2002 .

[60]  Michal Pilipczuk,et al.  On the number of types in sparse graphs , 2017, LICS.

[61]  Marthe Bonamy,et al.  Linear Kernels for Outbranching Problems in Sparse Digraphs , 2015, IPEC.

[62]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[63]  Geevarghese Philip,et al.  FPT Algorithms for Connected Feedback Vertex Set , 2010, WALCOM.

[64]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[65]  Stefan Richter,et al.  Enumerate and Expand: Improved Algorithms for Connected Vertex Cover and Tree Cover , 2006, Theory of Computing Systems.

[66]  Fedor V. Fomin,et al.  Bidimensionality and EPTAS , 2010, SODA '11.

[67]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[68]  Reinhard Diestel,et al.  Graph Theory, 4th Edition , 2012, Graduate texts in mathematics.

[69]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[70]  Fahad Panolan,et al.  Lossy Kernels for Connected Dominating Set on Sparse Graphs , 2017, STACS.

[71]  Felix Reidl,et al.  Characterising Bounded Expansion by Neighbourhood Complexity , 2016, Eur. J. Comb..

[72]  Stephan Kreutzer,et al.  Directed nowhere dense classes of graphs , 2011, SODA.

[73]  KreutzerStephan,et al.  Polynomial Kernels and Wideness Properties of Nowhere Dense Graph Classes , 2018 .

[74]  Luc Segoufin,et al.  First-order queries on classes of structures with bounded expansion , 2018, Log. Methods Comput. Sci..

[75]  Petr Hliněný,et al.  Are There Any Good Digraph Width Measures? , 2010, IPEC.

[76]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[77]  S. Shelah,et al.  Regularity lemmas for stable graphs , 2011, 1102.3904.