Electron-impact dissociation of D13CO+ molecular ions to 13CO+ ions

Absolute cross sections for electron-impact dissociation of D13CO+ ions have been measured over a collision energy range from 4 to 100 eV with a crossed electron–ion beams method. Total experimental uncertainties are about 16% near the cross section peak. The role of resonant and direct dissociative excitation for energies below 21 eV is discussed in light of the energy levels and photo-dissociation cross sections of the HCO+ formyl cation predicted by ab initio multi-reference configuration interaction calculations.

[1]  V. Zhaunerchyk,et al.  Dissociative recombination branching ratios and their influence on interstellar clouds , 2005 .

[2]  R. Streubel,et al.  The strongest bond in the universe? Accurate calculation of compliance matrices for the ions N2H+, HCO+, and HOC+ , 2003 .

[3]  E. Grant,et al.  An experimental measure of anharmonicity in the bending of DCO , 2001 .

[4]  Huber,et al.  Electron-impact induced fragmentation of fullerene ions , 2000, Physical review letters.

[5]  B. Turner A Common Gas-Phase Chemistry for Diffuse, Translucent, and Dense Clouds? , 2000 .

[6]  E. Grant,et al.  Double-resonance spectroscopy of the high Rydberg states of HCO. V. Rovibronic interactions and l-uncoupling in the (010) manifold , 2000 .

[7]  T. Dunning,et al.  Ab initio characterization of the HCOx (x = -1, 0, +1) species: structures, vibrational frequencies, CH bond dissociation energies, and HCO ionization potential and electron affinity , 2000 .

[8]  A. Siari,et al.  Asymmetrical dissociative ionization of N-2(+) and O-2(+) by electron impact , 1999 .

[9]  M. Mladenović,et al.  Theoretical study of the rovibrational energy spectrum and the numbers and densities of bound vibrational states for the system HCO + /HOC + , 1998 .

[10]  N. Adams,et al.  Effects of deuteration on vibrational excitation in the products of the electron recombination of HCO+ and N2H+ , 1997 .

[11]  M. Grieser,et al.  Electron impact dissociation of cold CH+: Cross sections and branching ratios , 1997 .

[12]  J. Mitchell,et al.  A merged-beam study of the dissociative recombination of , 1997 .

[13]  Bannister Absolute cross sections for electron-impact single ionization of Neq+ (q=2,4-6) ions. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  S. Carter,et al.  Accurate ab initio prediction of the equilibrium geometry of HCO+ and of rovibration energy levels of DCO+ , 1996 .

[15]  E. Grant,et al.  Double‐resonance spectroscopy of the high Rydberg states of HCO. I. A precise determination of the adiabatic ionization potential , 1995 .

[16]  E. Dishoeck,et al.  Photodissociation of the HCO+ ion. I. Two‐dimensional calculations through the I 1Π state , 1995 .

[17]  E. Dishoeck,et al.  Photodissociation of the HCO+ ion , 1995 .

[18]  H. Schaefer,et al.  High level ab initio study on the ground state potential energy hypersurface of the HCO+–COH+ system , 1994 .

[19]  K. Yamashita,et al.  Theoretical potential energy functions and rovibronic spectrum of electronically excited states of HCO , 1993 .

[20]  P. Taylor,et al.  Accurate ab initio quartic force fields for the ions HCO + and HOC + , 1993 .

[21]  S. Peyerimhoff,et al.  Ab initio investigation of the vibronic structure of the 3p 2Π (Rydberg) state of HCO and DCO , 1993 .

[22]  D. R. Bates Dissociative recombination when potential energy curves do not cross , 1992 .

[23]  J. Mitchell,et al.  A further study of HCO+ dissociative recombination , 1992 .

[24]  T. Amano The dissociative recombination rate coefficients of H+3, HN+2, and HCO+ , 1990 .

[25]  E. Ferguson,et al.  An absolute proton affinity scale in the ∼130-140 kcal mol−1 range , 1989 .

[26]  E. Grant,et al.  Spectroscopy of the 3p 2Π Rydberg state of HCO by resonance‐enhanced multiphoton ionization , 1988 .

[27]  Meyer,et al.  Experimental cross sections for electron-impact ionization of iron ions: Fe5+, Fe6+, and Fe9+ , 1986, Physical review. A, General physics.

[28]  M. Bogey,et al.  Millimeter and submillimeter wave spectrum of the deuterated isoformyl ion DOC , 1986 .

[29]  P. Kebarle,et al.  The formyl and isoformyl cations. A pulsed electron beam high pressure mass spectrometric study of the energetics of HCO+ and HOC+ , 1985 .

[30]  M. Jarrold,et al.  The formation and reactivity of HOC + : Interstellar implications , 1985 .

[31]  W. Rothwell,et al.  Infrared laser spectroscopy of the v3 fundamental of HCO( , 1984 .

[32]  P. Goldsmith,et al.  The [HCO+]/[HOC+] abundance ratio in molecular clouds , 1983 .

[33]  P. Dittner,et al.  Absolute-cross-section measurements for electron-impact ionization of triply charged inert-gas ions: Ne/sup 3 +/, Ar/sup 3 +/, Kr/sup 3 +/, and Xe/sup 3 +/ , 1983 .

[34]  J. D. Rogers,et al.  Ab initio calculation of infrared intensities for the linear isoelectronic series HCN, HNC, CO, HCO+, and HOC+ , 1982 .

[35]  C. Gudeman,et al.  Experimental Detection of HOC+by Microwave Spectroscopy , 1982 .

[36]  R. Saykally,et al.  The molecular structure of HCO+ by the microwave substitution method , 1981 .

[37]  E. Herbst,et al.  Millimeter and submillimeter spectra of HCO+ and DCO+ , 1981 .

[38]  L. Radom,et al.  HOC + : an observable interstellar species? A comparison with the isomeric and isoelectronic HCO + , HCN and HNC. , 1981 .

[39]  J. M. Farrar,et al.  Crossed beam study of the reaction H2+ (CO,H) HCO+ from 0.74 to 9.25 eV , 1980 .

[40]  R. Phaneuf,et al.  Electron-impact ionization of C 3 + and N 4 + , 1978 .

[41]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .

[42]  R. Berry,et al.  Formation of HCO+ by the associative ionization of CH+O , 1973 .

[43]  William H. Smith,et al.  Lifetime measurements and absolute oscillator strengths for some vacuum-ultraviolet transitions in O I and O II , 1971 .

[44]  D. Buhl,et al.  Unidentified Interstellar Microwave Line , 1970, Nature.

[45]  W. Klemperer Carrier of the Interstellar 89.190 GHz Line , 1970, Nature.