Exponentially fitted quadrature rules of Gauss type for oscillatory integrands

We consider the construction of N-point exponential fitted quadrature rules. Whereas the classical quadrature rules are constructed upon only polynomial considerations, the newly constructed rules will take into account both polynomial and exponential aspects. This leads to a variety of rules with interesting features. In particular we will investigate the possible application of these rules to highly oscillatory integrands. This is illustrated for N=<4.

[1]  J. R. Webster,et al.  A comparison of some methods for the evaluation of highly oscillatory integrals , 1999 .

[2]  Ulf Torsten Ehrenmark,et al.  A three-point formula for numerical quadrature of oscillatory integrals with variable frequency , 1988 .

[3]  Beatrice Paternoster,et al.  A Gauss quadrature rule for oscillatory integrands , 2001 .

[4]  David Levin,et al.  Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .

[5]  U. Ehrenmark On the error and its control in a two-parameter generalised Newton-Cotes rule , 1996 .

[6]  Ronald Cools,et al.  Extended quadrature rules for oscillatory integrands , 2003 .

[7]  Guido Vanden Berghe,et al.  Numerical quadrature based on an exponential type of interpolation , 1991, Int. J. Comput. Math..

[8]  G. A. Evans,et al.  An expansion method for irregular oscillatory integrals , 1997, Int. J. Comput. Math..

[9]  P. Köhler On the error of parameter-dependent compound quadrature formulas , 1993 .

[10]  H. De Meyer,et al.  On the error estimation for a mixed type of interpolation , 1990 .

[11]  L.Gr. Ixaru,et al.  Operations on oscillatory functions , 1997 .

[12]  Hamsapriye,et al.  Modified quadrature rules based on a generalised mixed interpolation formula , 1996 .

[13]  G. Evans,et al.  Two robust methods for irregular oscillatory integrals over a finite range , 1994 .

[14]  J. R. Webster,et al.  A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .

[15]  G. Vanden Berghe,et al.  Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points? , 2003 .

[16]  Ronald Cools,et al.  Quadrature Rules Using First Derivatives for Oscillatory Integrands , 2001 .

[17]  Guido Vanden Berghe,et al.  Modified newton-cotes formulae for numerical quadrature of oscillatory integrals with two independent variable frequencies , 1992, Int. J. Comput. Math..

[18]  H. De Meyer,et al.  On a class of modified Newton-Cotes quadrature formulae based upon mixed-type interpolation , 1990 .

[19]  A new quadrature rule based on a generalized mixed interpolation formula of exponential type , 2001 .

[20]  Ulf Torsten Ehrenmark A note on a recent study of oscillatory integration rules , 2001 .