Exponentially fitted quadrature rules of Gauss type for oscillatory integrands
暂无分享,去创建一个
[1] J. R. Webster,et al. A comparison of some methods for the evaluation of highly oscillatory integrals , 1999 .
[2] Ulf Torsten Ehrenmark,et al. A three-point formula for numerical quadrature of oscillatory integrals with variable frequency , 1988 .
[3] Beatrice Paternoster,et al. A Gauss quadrature rule for oscillatory integrands , 2001 .
[4] David Levin,et al. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .
[5] U. Ehrenmark. On the error and its control in a two-parameter generalised Newton-Cotes rule , 1996 .
[6] Ronald Cools,et al. Extended quadrature rules for oscillatory integrands , 2003 .
[7] Guido Vanden Berghe,et al. Numerical quadrature based on an exponential type of interpolation , 1991, Int. J. Comput. Math..
[8] G. A. Evans,et al. An expansion method for irregular oscillatory integrals , 1997, Int. J. Comput. Math..
[9] P. Köhler. On the error of parameter-dependent compound quadrature formulas , 1993 .
[10] H. De Meyer,et al. On the error estimation for a mixed type of interpolation , 1990 .
[11] L.Gr. Ixaru,et al. Operations on oscillatory functions , 1997 .
[12] Hamsapriye,et al. Modified quadrature rules based on a generalised mixed interpolation formula , 1996 .
[13] G. Evans,et al. Two robust methods for irregular oscillatory integrals over a finite range , 1994 .
[14] J. R. Webster,et al. A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .
[15] G. Vanden Berghe,et al. Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points? , 2003 .
[16] Ronald Cools,et al. Quadrature Rules Using First Derivatives for Oscillatory Integrands , 2001 .
[17] Guido Vanden Berghe,et al. Modified newton-cotes formulae for numerical quadrature of oscillatory integrals with two independent variable frequencies , 1992, Int. J. Comput. Math..
[18] H. De Meyer,et al. On a class of modified Newton-Cotes quadrature formulae based upon mixed-type interpolation , 1990 .
[19] A new quadrature rule based on a generalized mixed interpolation formula of exponential type , 2001 .
[20] Ulf Torsten Ehrenmark. A note on a recent study of oscillatory integration rules , 2001 .