Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity

[1]  Z. Yuan,et al.  Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production , 2016, BMC Microbiology.

[2]  In-Jung Lee,et al.  Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. , 2016, Plant physiology and biochemistry : PPB.

[3]  Q. Shen,et al.  Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9 , 2015, Microbial Cell Factories.

[4]  Jianjun Luo,et al.  Synthesis and Fungicidal Activity of β-Carboline Alkaloids and Their Derivatives , 2015, Molecules.

[5]  Meenakshi Sharma,et al.  Colletotrichum gloeosporioides : An Anthracnose Causing Pathogen of Fruits and Vegetables , 2015 .

[6]  Chunhao Jiang,et al.  Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. , 2015, Microbiological research.

[7]  A. Imran,et al.  Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities , 2014, Microbial Cell Factories.

[8]  M. Kibret,et al.  Assessment of potential antagonists for anthracnose (Colletotrichum gloeosporioides) disease of mango (Mangifera indica L.) in North Western Ethiopia (Pawe) , 2014 .

[9]  L. H. Marcellino,et al.  Antimicrobial and plant growth‐promoting properties of the cacao endophyte Bacillus subtilis ALB629 , 2014, Journal of applied microbiology.

[10]  Alemayehu Asfaw Amamo Coffee Production and Marketing in Ethiopia , 2014 .

[11]  S. M. Gaddad,et al.  Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. , 2014 .

[12]  S. Alamri,et al.  Selective inhibition of toxic cyanobacteria by β-carboline-containing bacterium Bacillus flexus isolated from Saudi freshwaters. , 2013, Saudi journal of biological sciences.

[13]  B. V. Mohite Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth , 2013 .

[14]  P. Thonart,et al.  Biocontrol and Plant Growth Promotion Characterization of Bacillus Species Isolated from Calendula officinalis Rhizosphere , 2013, Indian Journal of Microbiology.

[15]  A. Loureiro,et al.  CHARACTERIZATION OF Colletotrichum kahawae STRAINS IN TANZANIA , 2013 .

[16]  Diriba Muleta,et al.  Antagonistic Effects of Rhizobacteria Against Coffee Wilt Disease Caused by Gibberella xylarioides , 2013 .

[17]  F. Assefa,et al.  Phosphate-solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia , 2013 .

[18]  V. Wray,et al.  Characterization of an antifungal compound produced by Bacillus sp. strain A5F that inhibits Sclerotinia sclerotiorum , 2012, Journal of basic microbiology.

[19]  K. Chung,et al.  Characterization of three Colletotrichum acutatum isolates from Capsicum spp. , 2012, European Journal of Plant Pathology.

[20]  V. Shanmugam,et al.  Biological management of vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycospersici by plant growth-promoting rhizobacterial mixture , 2011 .

[21]  H. Hindorf,et al.  A review of three major fungal diseases of Coffea arabica L. in the rainforests of Ethiopia and progress in breeding for resistance in Kenya , 2011 .

[22]  M. Mcdonald,et al.  Staging coffee seedling growth: a rationale for shortenning the coffee seed germination test , 2010 .

[23]  P. Gates,et al.  Electrospray MS-based characterization of beta-carbolines--mutagenic constituents of thermally processed meat. , 2010, Molecular nutrition & food research.

[24]  T. Säll,et al.  Variation among Colletotrichum gloeosporioides isolates from infected coffee berries at different locations in Vietnam , 2009 .

[25]  M. Torres,et al.  Identification of Colletotrichum species causing anthracnose on Tahiti lime, tree tomato and mango , 2009 .

[26]  Iqbal Ahmad,et al.  Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. , 2008, Microbiological research.

[27]  Tin-Chun Chu,et al.  Microbiology Laboratory Manual , 2008 .

[28]  S. Chunhaleuchanon SCREENING OF RHIZOBACTERIA FOR THEIR PLANT GROWTH PROMOTING ACTIVITIES , 2008 .

[29]  B. Morgenstern,et al.  Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42 , 2007, Nature Biotechnology.

[30]  A. I. Shestakov,et al.  Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin , 2007, Archives of Microbiology.

[31]  Diriba Muleta Microbial inputs in coffee (Coffea arabica L.) production systems, southwestern Ethiopia , 2007 .

[32]  H. Berrougui,et al.  Protective effects of Peganum harmala L. extract, harmine and harmaline against human low‐density lipoprotein oxidation , 2006, The Journal of pharmacy and pharmacology.

[33]  M. Rutherford,et al.  Pests and Diseases of Coffee in Eastern Africa: A Technical and Advisory Manual , 2006 .

[34]  R. Sayyed,et al.  Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads , 2005 .

[35]  Haimin Chen,et al.  Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve , 2005 .

[36]  S. R. Subramoniam,et al.  Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates , 2004 .

[37]  M. Murakami,et al.  Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1 , 2002, Journal of Applied Phycology.

[38]  B. K. Lonsane,et al.  Immobilized growing cells of Gibberella fujikuroi P-3 for production of gibberellic acid and pigment in batch and semi-continuous cultures , 1988, Applied Microbiology and Biotechnology.

[39]  B. Glick,et al.  Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. , 2003, Physiologia plantarum.

[40]  J. Waller,et al.  Variation among Colletotrichum isolates from diseased coffee berries in Ethiopia , 2003 .

[41]  M. Bourguet-Kondracki,et al.  Identification of Harman as the Antibiotic Compound Produced by a Tunicate-Associated Bacterium , 2003, Marine Biotechnology.

[42]  G. Hartman,et al.  Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani , 2002 .

[43]  R. Viswanathan,et al.  Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases , 2001 .

[44]  H. Reichenbach,et al.  Antibiotics from gliding bacteria, LXXIII: Indole and quinoline derivatives as metabolites of tryptophan in myxobacteria , 2006 .

[45]  C. de Meester Genotoxic potential of beta-carbolines: a review. , 1995, Mutation research.

[46]  G. W. Small Spectrometric Identification of Organic Compounds , 1992 .

[47]  A. Renwick,et al.  Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis , 1991 .

[48]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[49]  Y. Kamiya,et al.  Effects of the new plant growth retardants of quaternary ammonium iodides on gibberellin biosynthesis in Gibberella fujikuroi , 1979 .

[50]  Ellis,et al.  Modern Methods of Plant Analysis / Moderne Methoden der Pflanzenanalyse , 1964, Modern Methods of Plant Analysis / Moderne Methoden der Pflanzenanalyse.

[51]  J. Hellmann,et al.  Modern Methods of Plant Analysis / Moderne Methoden der Pflanzenanalyse , 1955, Modern Methods of Plant Analysis / Moderne Methoden der Pflanzenanalyse.

[52]  R. Pikovskaya Mobilization of phosphorus in soil in connection with the vital activity of some microbial species , 1948 .

[53]  E. King,et al.  The colorimetric determination of phosphorus. , 1932, The Biochemical journal.