Universal extrapolation spaces for C 0 -semigroups

The classical theory of Sobolev towers allows for the construction of an infinite ascending chain of extrapolation spaces and an infinite descending chain of interpolation spaces associated with a given C 0 -semigroup on a Banach space. In this note we first generalize the latter to the case of a strongly continuous and exponentially equicontinuous semigroup on a complete locally convex space. As a new concept— even for C 0 -semigroups on Banach spaces—we then define a universal extrapolation space as the completion of the inductive limit of the ascending chain. Under mild assumptions we show that the semigroup extends to this space and that it is generated by an automorphism of the latter. Dually, we define a universal interpolation space as the projective limit of the descending chain. We show that the restriction of the initial semigroup to this space is again a semigroup and always has an automorphism as generator.

[1]  J. Bonet,et al.  Montel resolvents and uniformly mean ergodic semigroups of linear operators , 2013 .

[2]  J. Bonet,et al.  Mean ergodic semigroups of operators , 2012 .

[3]  J. Bonet,et al.  Barrelled Locally Convex Spaces , 2012 .

[4]  M. Haase Operator-valued H∞-calculus in Inter- and Extrapolation Spaces , 2006 .

[5]  J. Wengenroth Derived Functors in Functional Analysis , 2003 .

[6]  A. Albanese Trotter-Kato approximation theorems for locally equicontinuous semigroups (**) , 2002 .

[7]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[8]  C. Martínez,et al.  Spectral mapping theorem for fractional powers in locally convex spaces , 1997 .

[9]  R. Nagel Extrapolation Spaces for Semigroups , 1997 .

[10]  D. Goodman Personal Communications , 1994, Mobile Communications.

[11]  Jan van Neerven,et al.  The Adjoint of a Semigroup of Linear Operators , 1992 .

[12]  S. Schiavone,et al.  A fractional power approach to fractional calculus , 1990 .

[13]  C. Martínez,et al.  Fractional powers of non-negative operators in Fréchet spaces , 1989 .

[14]  A. Mcbride,et al.  On relating two approaches to fractional calculus , 1988 .

[15]  Y. Choe C0-semigroups on a locally convex space , 1985 .

[16]  G. Prato,et al.  Maximal regularity for evolution equations by interpolation and extrapolation , 1984 .

[17]  W. Lamb Fractional powers of operators defined on a Fréchet space , 1984, Proceedings of the Edinburgh Mathematical Society.

[18]  Giuseppe Da Prato,et al.  On extrapolation spaces , 1982 .

[19]  R. Meise,et al.  A projective description of weighted inductive limits , 1982 .

[20]  R. Meise,et al.  Köthe Sets and Köthe Sequence Spaces , 1982 .

[21]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[22]  V. A. Babalola,et al.  Semigroups of operators on locally convex spaces , 1974 .

[23]  J. Horváth Locally convex spaces , 1973 .

[24]  J. Wloka,et al.  Einführung in die Theorie der lokalkonvexen Räume , 1968 .