Structured Connectivity in Cerebellar Inhibitory Networks

Summary Defining the rules governing synaptic connectivity is key to formulating theories of neural circuit function. Interneurons can be connected by both electrical and chemical synapses, but the organization and interaction of these two complementary microcircuits is unknown. By recording from multiple molecular layer interneurons in the cerebellar cortex, we reveal specific, nonrandom connectivity patterns in both GABAergic chemical and electrical interneuron networks. Both networks contain clustered motifs and show specific overlap between them. Chemical connections exhibit a preference for transitive patterns, such as feedforward triplet motifs. This structured connectivity is supported by a characteristic spatial organization: transitivity of chemical connectivity is directed vertically in the sagittal plane, and electrical synapses appear strictly confined to the sagittal plane. The specific, highly structured connectivity rules suggest that these motifs are essential for the function of the cerebellar network.

[1]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[2]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[3]  R. Llinás,et al.  SPECIALIZED MEMBRANE JUNCTIONS BETWEEN NEURONS IN THE VERTEBRATE CEREBELLAR CORTEX , 1972, The Journal of cell biology.

[4]  T. M. Mayhew,et al.  Anatomy of the Cortex: Statistics and Geometry. , 1991 .

[5]  Naoki Masuda,et al.  Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[7]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[8]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[9]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[10]  M. Whittington,et al.  A Novel Network of Multipolar Bursting Interneurons Generates Theta Frequency Oscillations in Neocortex , 2003, Neuron.

[11]  P. Rakić Extrinsic cytological determinants of basket and stellate cell dendritic pattern in the cerebellar molecular layer , 1972, The Journal of comparative neurology.

[12]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[13]  Theoden I. Netoff,et al.  Synchronization from Second Order Network Connectivity Statistics , 2011, Front. Comput. Neurosci..

[14]  T. Fukuda Network Architecture of Gap Junction-Coupled Neuronal Linkage in the Striatum , 2009, The Journal of Neuroscience.

[15]  Robin P. Fawcett,et al.  Theory and application , 1988 .

[16]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[17]  T. Kosaka,et al.  Gap Junctions Linking the Dendritic Network of GABAergic Interneurons in the Hippocampus , 2000, The Journal of Neuroscience.

[18]  Henrik Jörntell,et al.  Cerebellar molecular layer interneurons – computational properties and roles in learning , 2010, Trends in Neurosciences.

[19]  Stefan Rotter,et al.  How Structure Determines Correlations in Neuronal Networks , 2011, PLoS Comput. Biol..

[20]  Erik De Schutter,et al.  Oscillations in the cerebellar cortex: a prediction of their frequency bands. , 2005, Progress in brain research.

[21]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Court Hull,et al.  Identification of an Inhibitory Circuit that Regulates Cerebellar Golgi Cell Activity , 2012, Neuron.

[23]  Travis A. Jarrell,et al.  The Connectome of a Decision-Making Neural Network , 2012, Science.

[24]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[25]  Eric Shea-Brown,et al.  Motif statistics and spike correlations in neuronal networks , 2012, BMC Neuroscience.

[26]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[27]  B. Ermentrout,et al.  Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Naoki Masuda,et al.  Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity , 2007, Journal of Computational Neuroscience.

[29]  Michael Häusser,et al.  Feed‐forward inhibition shapes the spike output of cerebellar Purkinje cells , 2005, The Journal of physiology.

[30]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[31]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[32]  P. Holland,et al.  A Method for Detecting Structure in Sociometric Data , 1970, American Journal of Sociology.

[33]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[34]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[35]  David Golomb,et al.  Inhibition Potentiates the Synchronizing Action of Electrical Synapses , 2007, Frontiers Comput. Neurosci..

[36]  R. Silver,et al.  Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input , 2010, Neuron.

[37]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[38]  James M. Bower,et al.  Model-Founded Explorations of the Roles of Molecular Layer Inhibition in Regulating Purkinje Cell Responses in Cerebellar Cortex: More Trouble for the Beam Hypothesis , 2010, Front. Cell. Neurosci..

[39]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[40]  A. Pollock C is for , 2007 .

[41]  J. Berke,et al.  Local dynamics of gap-junction-coupled interneuron networks , 2010, Physical biology.

[42]  Alexander Borst,et al.  The TREES Toolbox—Probing the Basis of Axonal and Dendritic Branching , 2011, Neuroinformatics.

[43]  Guillermo A. Cecchi,et al.  A Theory of Loop Formation and Elimination by Spike Timing-Dependent Plasticity , 2009, Front. Neural Circuits.

[44]  Johannes J. Letzkus,et al.  Cortical feed-forward networks for binding different streams of sensory information , 2006, Nature Neuroscience.

[45]  Johannes J. Letzkus,et al.  Dendritic patch-clamp recording , 2006, Nature Protocols.

[46]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[48]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[49]  Shan Yu,et al.  A Small World of Neuronal Synchrony , 2008, Cerebral cortex.

[50]  H. Sebastian Seung,et al.  Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes , 2009, Neuron.

[51]  R. Traub,et al.  Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro , 1998, Nature.

[52]  Miles A Whittington,et al.  Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro , 2003, Trends in Neurosciences.

[53]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[54]  A. Marty,et al.  Neighboring cerebellar purkinje cells communicate via retrograde inhibition of common presynaptic interneurons , 1993, Neuron.

[55]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[56]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[57]  B. Connors,et al.  The Spatial Dimensions of Electrically Coupled Networks of Interneurons in the Neocortex , 2002, The Journal of Neuroscience.

[58]  A. Kolodkin,et al.  Mechanisms and molecules of neuronal wiring: a primer. , 2011, Cold Spring Harbor perspectives in biology.

[59]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[60]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[61]  Xiao-Jing Wang,et al.  Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.

[62]  R. Angus Silver,et al.  neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space , 2007, Neuron.

[63]  Rosa Cossart,et al.  Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights , 2011, Trends in Neurosciences.

[64]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[65]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[66]  Michael A Long,et al.  Electrical Synapses in the Thalamic Reticular Nucleus , 2002, The Journal of Neuroscience.

[67]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[68]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[69]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[70]  M. Häusser,et al.  Tonic Synaptic Inhibition Modulates Neuronal Output Pattern and Spatiotemporal Synaptic Integration , 1997, Neuron.

[71]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[72]  A. Watt,et al.  The metamorphosis of the developing cerebellar microcircuit , 2011, Current Opinion in Neurobiology.

[73]  Michel A. Picardo,et al.  GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks , 2009, Science.

[74]  Antony W. Goodwin,et al.  ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN , 2010 .

[75]  E Marder,et al.  Network Oscillations Generated by Balancing Graded Asymmetric Reciprocal Inhibition in Passive Neurons , 1999, The Journal of Neuroscience.

[76]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[77]  Alanna J. Watt,et al.  Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity , 2009, Nature Neuroscience.

[78]  A. Marty,et al.  Synaptic currents at individual connections among stellate cells in rat cerebellar slices , 1998, The Journal of physiology.

[79]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[80]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[81]  D. Feldmeyer,et al.  Connexin expression in electrically coupled postnatal rat brain neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Alain Marty,et al.  Estimating functional connectivity in an electrically coupled interneuron network , 2013, Proceedings of the National Academy of Sciences.

[83]  N Kopell,et al.  Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks , 2001, The Journal of Neuroscience.

[84]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description , 1976, Journal of neurocytology.

[85]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[86]  Y Yarom,et al.  Electrotonic Coupling Interacts with Intrinsic Properties to Generate Synchronized Activity in Cerebellar Networks of Inhibitory Interneurons , 1999, The Journal of Neuroscience.

[87]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[88]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[89]  A. Peters Projection of Lateral Geniculate Nucleus to Area 17 of the Rat Cerebral Cortex , 1976 .

[90]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[91]  Xiaolin Zhou,et al.  ERP correlates of social conformity in a line judgment task , 2012, BMC Neuroscience.

[92]  Danko Nikolic,et al.  Non-parametric detection of temporal order across pairwise measurements of time delays , 2007, Journal of Computational Neuroscience.

[93]  Anirvan Ghosh,et al.  Molecular Mechanisms of Synaptic Specificity in Developing Neural Circuits , 2010, Neuron.

[94]  Areejit Samal,et al.  STDP-driven networks and the C. elegans neuronal network , 2010, 1004.5060.

[95]  J M Bower,et al.  Quantitative Golgi study of the rat cerebellar molecular layer interneurons using principal component analysis , 1998, The Journal of comparative neurology.

[96]  D. Harriman CEREBELLAR CORTEX, CYTOLOGY AND ORGANIZATION , 1974 .

[97]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[98]  H. Gerschenfeld,et al.  Inhibitory synaptic currents in stellate cells of rat cerebellar slices. , 1993, The Journal of physiology.

[99]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[100]  Eric Shea-Brown,et al.  Impact of Network Structure and Cellular Response on Spike Time Correlations , 2011, PLoS Comput. Biol..

[101]  R. Yuste,et al.  Decorrelating Action of Inhibition in Neocortical Networks , 2013, The Journal of Neuroscience.