ABSTRACT Robot fingers can be applied to various activities, one of which is to replace the hands/fingers of someone who lost their hands/fingers. To mobilize the robot can be used several methods one of them is by using muscle sensor. In this study, a pair of electrodes placed on the subject's forearm as well as an artificial finger robot was used. For the open and close the fingers on the robot learning process, the artificial neural network is used. From this research, the proposed system can imitate subject movements with the results are for open and close fingers are 90,2% and 85,4% respectively.. Key words : finger robot, neural network, electromyography ABSTRAK Robot jari dapat diaplikasikan pada berbagai kegiatan, salah satunya adalah untuk mengantikan tangan/jari pada seseorang yang kehilangan tangan/jarinya. Untuk mengerakkan robot tersebut dapat digunakan beberapa metoda salah satunya adalah dengan mengunakan sensor otot. Pada penelitian ini, sepasang elektroda diletakan pada lengan bawah subjek serta sebuah robot jari buatan digunakan. Untuk proses learning membuka dan menutup jari pada robot jari maka digunakan jaringan syaraf tiruan. Dari penelitian ini didapatkan bahwa sistem yang diusulkan dapat mengerakan robot jari sesuai dengan gerakan subjek, yaitu 90,2% dan 85,4% untuk gerakan membuka serta menutup. Key words : Jari robot, jaringan syaraf tiruan, electromyograpy
[1]
Nelson Arzola de la Peña,et al.
Voice Controlled Prosthetic Hand with Predefined Grasps and Movements
,
2017
.
[2]
Marco E. Benalcázar,et al.
Hand gesture recognition using machine learning and the Myo armband
,
2017,
2017 25th European Signal Processing Conference (EUSIPCO).
[3]
I. A. Sulistijono,et al.
Comparison of five time series EMG features extractions using Myo Armband
,
2015,
2015 International Electronics Symposium (IES).
[4]
Chenguang Yang,et al.
Hand gesture recognition using MYO armband
,
2017,
2017 Chinese Automation Congress (CAC).
[5]
Siti Nooraya Mohd Tawil,et al.
Viability of Controlling Prosthetic Hand Utilizing Electroencephalograph (EEG) Dataset Signal
,
2016
.
[6]
Yannick Aoustin,et al.
A real-time gesture classification using surface EMG to control a robotics hand
,
2017
.