Comparison of Simulated Polarimetric Signatures in Idealized Supercell Storms Using Two-Moment Bulk Microphysics Schemes in WRF

Microphysics parameterization becomes increasingly important as the model grid spacing increases toward convection-resolving scales. The performance of several partially or fully two-moment (2M) schemes within the Weather Research and Forecasting (WRF) Model, version 3.5.1, chosen because of their welldocumented advantages over one-moment (1M) schemes, is evaluated with respect to their ability in producing the well-known polarimetric radar signatures found within supercell storms. Such signatures include the ZDR and KDP columns, the ZDR arc, the midlevel ZDR and rHV rings, the hail signature in the forwardflank downdraft, and the KDP foot. Polarimetric variables are computed from WRF Model output using a polarimetricradarsimulator.Itisfoundthatmicrophysicsschemeswitha1Mrimed-icecategoryareunableto simulate theZDRarc, despitecontaininga2Mrain category.It is alsofoundthat ahail-likerimed-icecategory (in addition to graupel) may be necessary to reproduce the observed hail signature. For the microphysics schemes that only contain a graupel-like rimed-ice category, only very wet graupel particles are able to reach the lowest model level, which did not adequately reduce ZDR in this signature. The most realistic signatures overall are found with microphysics schemes that are fully 2M with a separate hail category.

[1]  E. Kessler On the distribution and continuity of water substance in atmospheric circulations , 1969 .

[2]  Nancy C. Knight,et al.  The Falling Behavior of Hailstones , 1970 .

[3]  G. Mccormick,et al.  Radar observations of the alignment of precipitation particles by electrostatic fields in thunderstorms , 1976 .

[4]  J. Carras,et al.  The aerodynamics of oblate hailstones , 1977 .

[5]  Robert B. Wilhelmson,et al.  Simulations of Right- and Left-Moving Storms Produced Through Storm Splitting , 1978 .

[6]  Joseph B. Klemp,et al.  The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy , 1982 .

[7]  Joseph B. Klemp,et al.  The Influence of the Shear-Induced Pressure Gradient on Thunderstorm Motion , 1982 .

[8]  S. Rutledge,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands , 1983 .

[9]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[10]  A. S. Omar,et al.  Scattering by Dielectric Obstacles Inside Guiding Structures , 1984 .

[11]  Conrad L. Ziegler,et al.  Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. , 1985 .

[12]  Roy Rasmussen,et al.  A Wind Tunnel and Theoretical Study on the Melting Behavior of Atmospheric Ice Particles: III. Experiment and Theory for Spherical Ice Particles of Radius > 500 μm , 1984 .

[13]  Peter V. Hobbs,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands , 1984 .

[14]  Nancy C. Knight,et al.  Hailstone Shape Factor and Its Relation to Radar Interpretation of Hail , 1986 .

[15]  R. Rauber,et al.  Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall , 1986 .

[16]  Joseph B. Klemp,et al.  DYNAMICS OF TORNADIC THUNDERSTORMS , 1987 .

[17]  R. Rasmussen,et al.  Melting and Shedding of Graupel and Hail. Part III: Investigation of the Role of Shed Drops as Hail Embryos in the 1 August CCOPE Severe Storm , 1987 .

[18]  A. Illingworth,et al.  Polarization radar studies of precipitation development in convective storms , 1987 .

[19]  Roy Rasmussen,et al.  Melting and Shedding of Graupel and Hail. Part I: Model Physics , 1987 .

[20]  Jothiram Vivekanandan,et al.  Rigorous Approach to Polarimetric Radar Modeling of Hydrometeor Orientation Distributions , 1991 .

[21]  J. W. Conway,et al.  A Study of Embryo Production and Hail Growth Using Dual-Doppler and Multiparameter Radars , 1993 .

[22]  Joanne Simpson,et al.  Goddard Cumulus Ensemble Model. Part I: Model Description , 1993 .

[23]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[24]  R. Houze,et al.  Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity , 1995 .

[25]  C. Kessinger,et al.  A Study of Thunderstorm Microphysics with Multiparameter Radar and Aircraft Observations , 1995 .

[26]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[27]  W. Skamarock,et al.  The resolution dependence of explicitly modeled convective systems , 1997 .

[28]  Lawrence D. Carey,et al.  CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado , 1998 .

[29]  Jean-Pierre Pinty,et al.  A comprehensive two‐moment warm microphysical bulk scheme. I: Description and tests , 2000 .

[30]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[31]  Guifu Zhang,et al.  A method for estimating rain rate and drop size distribution from polarimetric radar measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[32]  A. Seifert,et al.  Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description , 2001 .

[33]  Guifu Zhang,et al.  Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment , 2002 .

[34]  Jerry M. Straka,et al.  Enhanced polarimetric radar signatures above the melting level in a supercell storm , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[35]  Jerry M. Straka,et al.  Enhanced polarimetric radar signatures above the melting level in a supercell storm , 2002 .

[36]  A. R. T. Schuur,et al.  Observations and Classification of Echoes with the Polarimetric WSR-88 D radar Prepared by : , 2003 .

[37]  A. Pokrovsky,et al.  Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications , 2004 .

[38]  A. Pokrovsky,et al.  Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II : Sensitivity study , 2004 .

[39]  E. Mansell,et al.  A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories , 2005 .

[40]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter , 2005 .

[41]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .

[42]  A. Ryzhkov,et al.  Polarimetric Tornado Detection , 2005 .

[43]  Richard Cotton,et al.  Parametrization of ice‐particle size distributions for mid‐latitude stratiform cloud , 2005 .

[44]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part IV: Sensitivity Experiments , 2006 .

[45]  Song‐You Hong,et al.  The WRF Single-Moment 6-Class Microphysics Scheme (WSM6) , 2006 .

[46]  M. Xue 3B.1 CAPS REALTIME STORM-SCALE ENSEMBLE AND HIGH-RESOLUTION FORECASTS AS PART OF THE NOAA HAZARDOUS WEATHER TESTBED 2007 SPRING EXPERIMENT , 2007 .

[47]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[48]  G. Thompson,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization , 2008 .

[49]  D. Burgess,et al.  A Dual-Polarization-Radar-Based Assessment of the 8 May 2003 Oklahoma City Area Tornadic Supercell , 2008 .

[50]  Guifu Zhang,et al.  Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables , 2008 .

[51]  Alexander V. Ryzhkov,et al.  Polarimetric Signatures in Supercell Thunderstorms , 2008 .

[52]  G. Thompson,et al.  Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes , 2009 .

[53]  Alexander V. Ryzhkov,et al.  Storm-Relative Helicity Revealed from Polarimetric Radar Measurements , 2009 .

[54]  R. McTaggart-Cowan,et al.  Sedimentation-Induced Errors in Bulk Microphysics Schemes , 2010 .

[55]  E. Mansell On Sedimentation and Advection in Multimoment Bulk Microphysics , 2010 .

[56]  Guifu Zhang,et al.  Simultaneous Estimation of Microphysical Parameters and the Atmospheric State Using Simulated Polarimetric Radar Data and an Ensemble Kalman Filter in the Presence of an Observation Operator Error , 2010 .

[57]  Guifu Zhang,et al.  Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme , 2010 .

[58]  Guifu Zhang,et al.  State estimation of convective storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data , 2010 .

[59]  Eric C. Bruning,et al.  Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics , 2010 .

[60]  Daniel T. Dawson,et al.  Comparison of Evaporation and Cold Pool Development between Single-moment and Multi-moment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms , 2009 .

[61]  Song-You Hong,et al.  Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models , 2010 .

[62]  Jason A. Milbrandt,et al.  Comparison of Two-Moment Bulk Microphysics Schemes in Idealized Supercell Thunderstorm Simulations , 2011 .

[63]  Jason A. Milbrandt,et al.  Sensitivity of Idealized Squall-Line Simulations to the Level of Complexity Used in Two-Moment Bulk Microphysics Schemes , 2012 .

[64]  Yefim L. Kogan,et al.  Parameterization of Cloud Microphysics Based on Full Integral Moments , 2012 .

[65]  Mingjing Tong,et al.  Ensemble Kalman Filter Analyses of the 29–30 May 2004 Oklahoma Tornadic Thunderstorm Using One- and Two-Moment Bulk Microphysics Schemes, with Verification against Polarimetric Radar Data , 2012 .

[66]  Alexander V. Ryzhkov,et al.  The Impact of Size Sorting on the Polarimetric Radar Variables , 2012 .

[67]  B. Colle,et al.  Comparisons of Single- and Double-Moment Microphysics Schemes in the Simulation of a Synoptic-Scale Snowfall Event , 2012 .

[68]  Louis J. Wicker,et al.  Impact of the Environmental Low-Level Wind Profile on Ensemble Forecasts of the 4 May 2007 Greensburg, Kansas, Tornadic Storm and Associated Mesocyclones , 2012 .

[69]  Conrad L. Ziegler,et al.  Aerosol Effects on Simulated Storm Electrification and Precipitation in a Two-Moment Bulk Microphysics Model , 2013 .

[70]  Corey K. Potvin,et al.  Comparison between Dual-Doppler and EnKF Storm-Scale Wind Analyses: The 29–30 May 2004 Geary, Oklahoma, Supercell Thunderstorm , 2013 .

[71]  E. Luke,et al.  The Role of Cloud Microphysics Parameterization in the Simulation of Mesoscale Convective System Clouds and Precipitation in the Tropical Western Pacific , 2013 .

[72]  Guifu Zhang,et al.  The Analysis and Prediction of Microphysical States and Polarimetric Radar Variables in a Mesoscale Convective System Using Double-Moment Microphysics, Multinetwork Radar Data, and the Ensemble Kalman Filter , 2014 .

[73]  M. Xue,et al.  Evaluating the Performance of Planetary Boundary Layer and Cloud Microphysical Parameterization Schemes in Convection-Permitting Ensemble Forecasts Using Synthetic GOES-13 Satellite Observations , 2014 .

[74]  Louis J. Wicker,et al.  Low-LevelZDRSignatures in Supercell Forward Flanks: The Role of Size Sorting and Melting of Hail , 2014 .

[75]  Alan Shapiro,et al.  Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part I: Storm- and Tornado-Scale Numerical Forecasts , 2015 .

[76]  Daniel T. Dawson,et al.  Does wind shear cause hydrometeor size sorting , 2015 .

[77]  Gregory Thompson,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part II: Case Study Comparisons with Observations and Other Schemes , 2015 .

[78]  Richard P. Whitehill,et al.  The Development of Effective , 2016 .

[79]  S. J. Weiss,et al.  3 B . 2 PRELIMINARY ANALYSIS ON THE REAL-TIME STORM-SCALE ENSEMBLE FORECASTS PRODUCED AS A PART OF THE NOAA HAZARDOUS WEATHER TESTBED 2007 SPRING EXPERIMENT , 2022 .