Occlusion detection in dense stereo estimation with convex optimization

In this paper, we propose a dense two-frame stereo algorithm which handles occlusion in a variational framework. Our method is based on a new regularization model which includes both a constraint on the occlusion width and a visibility constraint in nonoccluded areas. The minimization of the resulting energy functional is done by convex relaxation. A post-processing then detects and fills the occluded regions. We also propose a novel dissimilarity measure that combines color and gradient comparison with a variable respective weight, to benefit from the robustness of the comparison based on local variations while avoiding the fattening effect it may generate.

[1]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Alan L. Yuille,et al.  Occlusions and binocular stereo , 1992, International Journal of Computer Vision.

[3]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[5]  L. Rudin Images, Numerical Analysis of Singularities and Shock Filters , 1987 .

[6]  Daniel Cremers,et al.  Global Solutions of Variational Models with Convex Regularization , 2010, SIAM J. Imaging Sci..

[7]  Mongi A. Abidi,et al.  Occlusion filling in stereo: Theory and experiments , 2013, Comput. Vis. Image Underst..

[8]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[9]  C.-C. Jay Kuo,et al.  Robust stereo matching with improved graph and surface models and occlusion handling , 2010, J. Vis. Commun. Image Represent..

[10]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[11]  Julie Delon,et al.  Le phénomène d'adhérence en stéréoscopie dépend du critère de corrélation , 2001 .

[12]  Vladimir Kolmogorov,et al.  Kolmogorov and Zabih's Graph Cuts Stereo Matching Algorithm , 2014, Image Process. Line.

[13]  Aaron F. Bobick,et al.  Large Occlusion Stereo , 1999, International Journal of Computer Vision.

[14]  D. Nistér,et al.  Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[16]  Marsha Jo Hannah,et al.  Computer matching of areas in stereo images. , 1974 .

[17]  Daniel Scharstein,et al.  Matching images by comparing their gradient fields , 1994, Proceedings of 12th International Conference on Pattern Recognition.