Geometric Quantization of Complex Monge-Ampère Operator for Certain Diffusion Flows
暂无分享,去创建一个
[1] F. Berezin,et al. QUANTIZATION IN COMPLEX SYMMETRIC SPACES , 1975 .
[2] R. Berman,et al. A variational approach to complex Monge-Ampère equations , 2009, 0907.4490.
[3] Hirohiko Shima,et al. Geometry of Hessian Structures , 2013, GSI.
[4] F. Barbaresco. Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices & Information Geometry , 2008, 2008 IEEE Radar Conference.
[5] J. Fine. Calabi flow and projective embeddings , 2008, 0811.0155.
[6] A Hitchin-Kobayashi correspondence for Kaehler fibrations , 1999, math/9901076.
[7] S. Ali,et al. QUANTIZATION METHODS: A GUIDE FOR PHYSICISTS AND ANALYSTS , 2004, math-ph/0405065.
[8] X. Ma,et al. Holomorphic Morse Inequalities and Bergman Kernels , 2007 .
[9] Frédéric Barbaresco,et al. Interactions between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery , 2009, ETVC.
[10] Some numerical results in complex differential geometry , 2005, math/0512625.
[11] T. Mabuchi. Some symplectic geometry on compact Kähler manifolds. I , 1987 .
[12] Huai-Dong Cao,et al. Deformation of Kähler matrics to Kähler-Einstein metrics on compact Kähler manifolds , 1985 .
[13] R. Mossa,et al. Berezin quantization of homogeneous bounded domains , 2011, 1106.2510.
[14] Jean-Pierre Bourguignon,et al. Ricci curvature and measures , 2009 .
[15] G. Kempf,et al. The length of vectors in representation spaces , 1979 .
[16] Jacob Sturm,et al. The Monge-Ampère operator and geodesics in the space of Kähler potentials , 2005, math/0504157.
[17] G. Tian. On a set of polarized Kähler metrics on algebraic manifolds , 1990 .
[18] Frédéric Barbaresco,et al. Information Intrinsic Geometric Flows , 2006 .
[19] S. Yau. Nonlinear Analysis In Geometry , 1986 .
[20] R. Berman. Relative Kahler-Ricci flows and their quantization , 2010, 1002.3717.
[21] Julien Keller. Ricci iterations on Kähler classes , 2007, Journal of the Institute of Mathematics of Jussieu.
[22] Jacob Sturm,et al. Monge-Ampère Equations, Geodesics and Geometric Invariant Theory , 2005 .
[23] S. Yau,et al. Upper bound for the first eigenvalue of algebraic submanifolds , 1994 .
[24] P. Eyssidieux,et al. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).