Geometric Quantization of Complex Monge-Ampère Operator for Certain Diffusion Flows

In the 40’s, C.R. Rao considered probability distributions for a statistical model as the points of a Riemannian smooth manifold, where the considered Riemannian metric is the so-called Fisher metric. When extended to the complex projective space, this metric is actually the Fubini-Study metric. For certain models, it is quite remarkable that one actually needs to consider data with complex values.

[1]  F. Berezin,et al.  QUANTIZATION IN COMPLEX SYMMETRIC SPACES , 1975 .

[2]  R. Berman,et al.  A variational approach to complex Monge-Ampère equations , 2009, 0907.4490.

[3]  Hirohiko Shima,et al.  Geometry of Hessian Structures , 2013, GSI.

[4]  F. Barbaresco Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices & Information Geometry , 2008, 2008 IEEE Radar Conference.

[5]  J. Fine Calabi flow and projective embeddings , 2008, 0811.0155.

[6]  A Hitchin-Kobayashi correspondence for Kaehler fibrations , 1999, math/9901076.

[7]  S. Ali,et al.  QUANTIZATION METHODS: A GUIDE FOR PHYSICISTS AND ANALYSTS , 2004, math-ph/0405065.

[8]  X. Ma,et al.  Holomorphic Morse Inequalities and Bergman Kernels , 2007 .

[9]  Frédéric Barbaresco,et al.  Interactions between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery , 2009, ETVC.

[10]  Some numerical results in complex differential geometry , 2005, math/0512625.

[11]  T. Mabuchi Some symplectic geometry on compact Kähler manifolds. I , 1987 .

[12]  Huai-Dong Cao,et al.  Deformation of Kähler matrics to Kähler-Einstein metrics on compact Kähler manifolds , 1985 .

[13]  R. Mossa,et al.  Berezin quantization of homogeneous bounded domains , 2011, 1106.2510.

[14]  Jean-Pierre Bourguignon,et al.  Ricci curvature and measures , 2009 .

[15]  G. Kempf,et al.  The length of vectors in representation spaces , 1979 .

[16]  Jacob Sturm,et al.  The Monge-Ampère operator and geodesics in the space of Kähler potentials , 2005, math/0504157.

[17]  G. Tian On a set of polarized Kähler metrics on algebraic manifolds , 1990 .

[18]  Frédéric Barbaresco,et al.  Information Intrinsic Geometric Flows , 2006 .

[19]  S. Yau Nonlinear Analysis In Geometry , 1986 .

[20]  R. Berman Relative Kahler-Ricci flows and their quantization , 2010, 1002.3717.

[21]  Julien Keller Ricci iterations on Kähler classes , 2007, Journal of the Institute of Mathematics of Jussieu.

[22]  Jacob Sturm,et al.  Monge-Ampère Equations, Geodesics and Geometric Invariant Theory , 2005 .

[23]  S. Yau,et al.  Upper bound for the first eigenvalue of algebraic submanifolds , 1994 .

[24]  P. Eyssidieux,et al.  Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).

[25]  Etude et extension des flots de ricci, kähler-ricci et calabi dans le cadre du traitement de l'image et de la géométrie de l'information , 2005 .