Morita equivalence methods in classification of fusion categories

We describe an approach to classification of fusion categories in terms of Morita equivalence. This is usually achieved by analyzing Drinfeld centers of fusion categories and finding Tannakian subcategories therein.

[1]  Sonia Natale,et al.  Solvability of a Class of Braided Fusion Categories , 2012, Appl. Categorical Struct..

[2]  C. Galindo Clifford theory for graded fusion categories , 2010, 1010.5283.

[3]  Ehud Meir,et al.  Module categories over graded fusion categories , 2010, 1010.4333.

[4]  S. Ng,et al.  Congruence Subgroups and Generalized Frobenius-Schur Indicators , 2008, 0806.2493.

[5]  P. Etingof,et al.  Fusion categories and homotopy theory , 2009, 0909.3140.

[6]  V. Drinfeld,et al.  On braided fusion categories I , 2009, 0906.0620.

[7]  D. Naidu,et al.  Centers of graded fusion categories , 2009, 0905.3117.

[8]  P. Etingof,et al.  WEAKLY GROUP-THEORETICAL AND SOLVABLE FUSION CATEGORIES , 2008, 0809.3031.

[9]  D. Nikshych Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories , 2007, 0712.0585.

[10]  Y. Sommerhaeuser,et al.  Hopf Algebras and Congruence Subgroups , 2007, 0710.0705.

[11]  V. Drinfeld,et al.  GROUP-THEORETICAL PROPERTIES OF NILPOTENT MODULAR CATEGORIES , 2007, 0704.0195.

[12]  S. Gelaki,et al.  Nilpotent fusion categories , 2006, math/0610726.

[13]  N. Andruskiewitsch,et al.  On module categories over finite-dimensional Hopf algebras , 2006, math/0608781.

[14]  P. Etingof,et al.  An analogue of Radford's S4 formula for finite tensor categories , 2004, math/0404504.

[15]  P. Etingof,et al.  Finite tensor categories , 2003, math/0301027.

[16]  Michael Mueger From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories , 2001, math/0111204.

[17]  S. Natale On group theoretical Hopf algebras and exact factorizations of finite groups , 2002, math/0208054.

[18]  P. Etingof,et al.  On fusion categories , 2002, math/0203060.

[19]  V. Ostrik Module categories over the Drinfeld double of a finite group , 2002, math/0202130.

[20]  Michael Mueger On the Structure of Modular Categories , 2002, math/0201017.

[21]  Michael Mueger From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors , 2001, math/0111205.

[22]  V. Ostrik Module categories, weak Hopf algebras and modular invariants , 2001, math/0111139.

[23]  P. Schauenburg The monoidal center construction and bimodules , 2001 .

[24]  A. Kirillov,et al.  Lectures on tensor categories and modular functors , 2000 .

[25]  高田 敏恵 書評 Turaev: Quantum Invariants of Knots and 3-Manifolds〔和文〕 , 2000 .

[26]  Alain Bruguières Catégories prémodulaires, modularisations et invariants des variétés de dimension 3 , 2000 .

[27]  Michael Mueger Galois Theory for Braided Tensor Categories and the Modular Closure , 1998, math/9812040.

[28]  Andrew Pressley,et al.  QUANTUM GROUPS (Graduate Texts in Mathematics 155) , 1997 .

[29]  A. Masuoka The ⁿ theorem for semisimple Hopf algebras , 1996 .

[30]  B. Pareigis On Braiding and Dyslexia , 1995 .

[31]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[32]  T. Gannon,et al.  Remarks on Galois symmetry in rational conformal field theories , 1994 .

[33]  T. Kerler On braided tensor categories , 1994, hep-th/9402018.

[34]  Yongchang Zhu Hopf algebras of prime dimension , 1994 .

[35]  Susan Montgomery,et al.  Hopf algebras and their actions on rings , 1993 .

[36]  J. Goeree,et al.  Markov traces and II1 factors in conformal field theory , 1991 .

[37]  K.-H. Ulbrich,et al.  On hopf algebras and rigid monoidal categories , 1990 .

[38]  H. Schneider Principal homogeneous spaces for arbitrary Hopf algebras , 1990 .

[39]  G. Anderson,et al.  Rationality in conformal field theory , 1988 .

[40]  C. Vafa Toward classification of conformal theories , 1988 .

[41]  G. Kats Certain arithmetic properties of ring groups , 1972 .