Cloud computing for energy requirement and solar potential assessment

[1]  A. Kazantzidis,et al.  New challenges in solar energy resource and forecasting in Greece , 2018 .

[2]  S. Hewitt,et al.  2017 , 2017, Les 25 ans de l’OMC: Une rétrospective en photos.

[3]  Madhukar B Potdar,et al.  Image Processing in Hadoop Distributed Environment , 2017 .

[4]  S. Marchenko,et al.  Parameterizing Deep Water Percolation Improves Subsurface Temperature Simulations by a Multilayer Firn Model , 2017 .

[5]  Alexei Novikov,et al.  Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping , 2017, Front. Earth Sci..

[6]  John Boland,et al.  Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets , 2016 .

[7]  Chris T. Kiranoudis,et al.  Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters , 2016 .

[8]  Roshan Rajak,et al.  High Resolution Satellite Image Processing Using Hadoop Framework , 2015, 2015 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM).

[9]  M. V. Guisado,et al.  Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information , 2015 .

[10]  Andrea Masiero,et al.  Solar Irradiance Modelling with NASA WW GIS Environment , 2015, ISPRS Int. J. Geo Inf..

[11]  Yan Su A Comparative Analysis of the Performance of a Grid-Connected Photovoltaic System Based on Low- and High-Frequency Solar Data , 2015 .

[12]  Yehia El-khatib,et al.  Web technologies for environmental Big Data , 2015, Environ. Model. Softw..

[13]  Shaowen Wang,et al.  CyberGIS software: a synthetic review and integration roadmap , 2013, Int. J. Geogr. Inf. Sci..

[14]  Joel H. Saltz,et al.  Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce , 2013, Proc. VLDB Endow..

[15]  N. Qazi,et al.  Towards a GIS-Based Decision Support System on the Amazon Cloud for the Modelling of Domestic Wastewater Treatment Solutions in Wexford, Ireland , 2013, 2013 UKSim 15th International Conference on Computer Modelling and Simulation.

[16]  Borut Zalik,et al.  GPU-based roofs' solar potential estimation using LiDAR data , 2013, Comput. Geosci..

[17]  Dana Petcu,et al.  Cloud Computing for Earth Observation , 2013, Data Intensive Storage Services for Cloud Environments.

[18]  Dinesh Agarwal Crayons: An Azure Cloud Based Parallel System for GIS Overlay Operations , 2012, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis.

[19]  Sven Teske,et al.  Energy [R]evolution 2010—a sustainable world energy outlook , 2011 .

[20]  Shifeng Wang,et al.  Determining profits for solar energy with remote sensing data , 2010 .

[21]  Ronnen Levinson,et al.  Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants , 2010 .

[22]  C. Gueymard PROGRESS IN DIRECT IRRADIANCE MODELING AND VALIDATION , 2010 .

[23]  J. Kaňuk,et al.  Assessment of photovoltaic potential in urban areas using open-source solar radiation tools , 2009 .

[24]  S. P Sukhatme,et al.  Solar Energy: Principles of Thermal Collection and Storage , 2009 .

[25]  C. Gueymard REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset , 2008 .

[26]  S. Yamashiro,et al.  Novel Distributed Power Generating System of PV-ECaSS Using Solar Energy Estimation , 2007, IEEE Transactions on Energy Conversion.

[27]  Tv Ramachandra Solar energy potential assessment using GIS , 2007 .

[28]  Thomas Huld,et al.  PV-GIS: a web-based solar radiation database for the calculation of PV potential in Europe , 2005 .

[29]  L. Wald,et al.  The method Heliosat-2 for deriving shortwave solar radiation from satellite images , 2004 .

[30]  Vinay K. Dadhwal,et al.  Bandpass solar exoatmospheric irradiance and Rayleigh optical thickness of sensors on board Indian Remote Sensing Satellites-1B, -1C, -1D, and P4 , 2002, IEEE Trans. Geosci. Remote. Sens..

[31]  Xiaodong Zhang,et al.  Evaluation of an innovative sensor for measuring global and diffuse irradiance, and sunshine duration , 2002 .

[32]  F. Trieb,et al.  Assessment of Solar Electricity Potentials in North Africa Based on Satellite Data and a Geographic Information System , 2001 .

[33]  M. Thekaekara,et al.  Solar radiation measurement: Techniques and instrumentation , 1976 .