On Spatial Quantization of Color Images

Image quantization and dithering are fundamental image processing problems in computer vision and graphics. Both steps are generally performed sequentially and, in most cases, independent of each other. Color quantization with a pixel-wise defined distortion measure and the dithering process with its local neighborhood typically optimize different quality criteria or, frequently, follow a heuristic approach without reference to any quality measure. In this paper we propose a new model to simultaneously quantize and dither color images. The method is based on a rigorous cost-function approach which optimizes a quality criterion derived from a simplified model of human perception. Optimizations are performed by an efficient multiscale procedure which substantially alleviates the computational burden. The quality criterion and the optimization algorithms are evaluated on a representative set of artificial and real-world images thereby showing a significant image quality improvement over standard color reduction approaches.

[1]  Lale Akarun,et al.  Joint quantization and dithering of color images , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[2]  Joachim M. Buhmann,et al.  On spatial quantization of color images , 2000, IEEE Trans. Image Process..

[3]  Rodney L. Miller,et al.  Design of minimum visual modulation halftone patterns , 1991, IEEE Trans. Syst. Man Cybern..

[4]  Paul S. Heckbert Color image quantization for frame buffer display , 1982, SIGGRAPH.

[5]  Joachim M. Buhmann,et al.  Multiscale Annealing for Grouping and Unsupervised Texture Segmentation , 1999, Comput. Vis. Image Underst..

[6]  Thomas Hofmann,et al.  Statistical Models for Co-occurrence Data , 1998 .

[7]  D. Alman CIE technical committee 1–29, industrial color‐difference evaluation , 1991 .

[8]  Joachim M. Buhmann,et al.  Unsupervised Texture Segmentation in a Deterministic Annealing Framework , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[10]  Thrasyvoulos N. Pappas,et al.  Model-based halftoning of color images , 1997, IEEE Trans. Image Process..

[11]  Michael Gervautz,et al.  A simple method for color quantization: octree quantization , 1990 .

[12]  Risto Näsänen Visibility of halftone dot textures , 1984, IEEE Trans. Syst. Man Cybern..

[13]  Jan P. Allebach,et al.  Model-based color image sequence quantization , 1994, Electronic Imaging.

[14]  Joachim M. Buhmann,et al.  Multiscale annealing for real-time unsupervised texture segmentation , 1997, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[15]  Carsten Peterson,et al.  A Mean Field Theory Learning Algorithm for Neural Networks , 1987, Complex Syst..

[16]  R. E. Miller,et al.  Image halftoning using a visual model in error diffusion , 1993 .

[17]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[18]  Stefanos D. Kollias,et al.  A unified neutral network approach to digital image halftoning , 1991, IEEE Trans. Signal Process..

[19]  David L. Neuhoff,et al.  Least-squares model-based halftoning , 1992, Electronic Imaging.

[20]  Gaurav Sharma,et al.  Digital color imaging , 1997, IEEE Trans. Image Process..

[21]  Albert J. Ahumada,et al.  Principled halftoning based on human vision models , 1992, Electronic Imaging.

[22]  Jan P. Allebach,et al.  Sequential scalar quantization of color images , 1994, J. Electronic Imaging.

[23]  Joachim M. Buhmann,et al.  Deterministic Annealing for Unsupervised Texture Segmentation , 1997, EMMCVPR.

[24]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  HofmannThomas,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997 .

[26]  Robert Ulichney,et al.  Dithering with blue noise , 1988, Proc. IEEE.

[27]  Joachim M. Buhmann,et al.  Dithered Color Quantization , 1998, Comput. Graph. Forum.

[28]  Sudhir S. Dixit Quantization of color images for display/printing on limited color output devices , 1991, Comput. Graph..

[29]  Miller,et al.  Graph partitioning using annealed neural networks , 1989 .

[30]  Joachim M. Buhmann,et al.  Unsupervised On-line Learning of Decision Trees for Hierarchical Data Analysis , 1997, NIPS.

[31]  Wesley E. Snyder,et al.  Mean field annealing: a formalism for constructing GNC-like algorithms , 1992, IEEE Trans. Neural Networks.

[32]  David H. Alman,et al.  CIE technical committee 1–29, industrial color‐difference evaluation progress report , 1993 .

[33]  Michael T. Orchard,et al.  Color quantization of images , 1991, IEEE Trans. Signal Process..

[34]  Gregory Joy,et al.  Color image quantization by agglomerative clustering , 1994, IEEE Computer Graphics and Applications.

[35]  Jan P. Allebach,et al.  Sequential scalar quantization of vectors: an analysis , 1995, IEEE Trans. Image Process..

[36]  Charles A. Bouman,et al.  Optimized error diffusion for image display , 1992, J. Electronic Imaging.

[37]  Kenneth Rose,et al.  Hierarchical, Unsupervised Learning with Growing via Phase Transitions , 1996, Neural Computation.

[38]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[39]  Jan P. Allebach,et al.  Quantization and multilevel halftoning of color images for near original image quality , 1990, Other Conferences.

[40]  Naftali Tishby,et al.  Distributional Clustering of English Words , 1993, ACL.

[41]  Paul S. Heckbert Color image quantization for frame buffer display , 1998 .

[42]  Jan P. Allebach,et al.  Model-based halftoning using direct binary search , 1992, Electronic Imaging.

[43]  David J. Sakrison,et al.  The effects of a visual fidelity criterion of the encoding of images , 1974, IEEE Trans. Inf. Theory.

[44]  Joachim M. Buhmann,et al.  Vector quantization with complexity costs , 1993, IEEE Trans. Inf. Theory.

[45]  Anthony H. Dekker,et al.  Kohonen neural networks for optimal colour quantization , 1994 .

[46]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[47]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[48]  Jan P. Allebach,et al.  Model-based color image quantization , 1993, Electronic Imaging.

[49]  Charles A. Bouman,et al.  Optimized universal color palette design for error diffusion , 1995, J. Electronic Imaging.

[50]  P. Pérez,et al.  Multiscale minimization of global energy functions in some visual recovery problems , 1994 .

[51]  Xiaolin Wu,et al.  Color quantization by dynamic programming and principal analysis , 1992, TOGS.

[52]  Robert Ulichney,et al.  Digital Halftoning , 1987 .

[53]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[54]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  F. Campbell The human eye as an optical filter , 1968 .

[56]  David E. van den Bout,et al.  Graph partitioning using annealed neural networks , 1990, International 1989 Joint Conference on Neural Networks.

[57]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[58]  Alan L. Yuille,et al.  Generalized Deformable Models, Statistical Physics, and Matching Problems , 1990, Neural Computation.

[59]  Paul Scheunders,et al.  Joint quantization and error diffusion of color images using competitive learning , 1997, Proceedings of International Conference on Image Processing.

[60]  Geoffrey C. Fox,et al.  A deterministic annealing approach to clustering , 1990, Pattern Recognit. Lett..