Nano‐Localized Heating Source for Photonics and Plasmonics

Nanomaterials offer unique properties that bridge classic to quantum behavior of matter. Plasmonic metallic nanoparticles (NPs) are a particular class of nanomaterials which possess the capability to localize light down to the nanoscale: visible electromagnetic radiation induces an oscillation of the free electrons localized at the metal (NPs)/dielectric (surrounding medium) interface. This phenomenon, called localized plasmon resonance (LPR), can be controlled in frequency by varying both the size and the shape of the nanoparticles and the dielectric constant of the surrounding medium. [ 1 ] Due to the electronelectron scattering and the electron-phonon coupling associated with the LPR effect, the strong electric fi eld generated around the NPs is converted into heat and the NPs behave as nanosources of heat. [ 2,3 ] In the last ten years, this resonant effect has enabled a remarkable breakthrough in fi cancer through

[1]  Xuchuan Jiang,et al.  Gold nanorods : Limitations on their synthesis and optical properties , 2006 .

[2]  R. K. Harrison,et al.  Thermal analysis of gold nanorods heated with femtosecond laser pulses , 2008, Journal of physics D: Applied physics.

[3]  L. Chau,et al.  Sensing capability of the localized surface plasmon resonance of gold nanorods. , 2007, Biosensors & bioelectronics.

[4]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[5]  Jaebeom Lee,et al.  Nanoparticle assemblies with molecular springs: a nanoscale thermometer. , 2005, Angewandte Chemie.

[6]  Naomi J. Halas,et al.  Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment , 2004 .

[7]  Landa Hoke,et al.  Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams. , 2010, Optics express.

[8]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[9]  N. Jana,et al.  Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. , 2005, Small.

[10]  David L. Kaplan,et al.  Silk inverse opals , 2012, Nature Photonics.

[11]  P. Jain,et al.  Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. , 2007, Nanomedicine.

[12]  L. Blinov Electro-optical and Magneto-optical Properties of Liquid Crystals , 1983 .

[13]  I. Khoo Nonlinear optics of liquid crystalline materials , 2009 .

[14]  R. Gans,et al.  Über die Form ultramikroskopischer Goldteilchen , 1912 .

[15]  Alaaldin M. Alkilany,et al.  Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting ☆ , 2011 .

[16]  M. L. Curri,et al.  Photochemical Synthesis of Water-Soluble Gold Nanorods: The Role of Silver in Assisting Anisotropic Growth , 2009 .

[17]  K. Bartels,et al.  Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser. , 1995, Cancer letters.

[18]  A. V. Alekseeva,et al.  Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. , 2005, Applied optics.

[19]  George Chumanov,et al.  Plasmon Coupling in Two-Dimensional Arrays of Silver Nanoparticles: II. Effect of the Particle Size and Interparticle Distance† , 2010 .

[20]  W. Huck,et al.  Wavelength tuning the photonic band gap in chiral nematic liquid crystals using electrically commanded surfaces , 2007 .

[21]  Luis M. Liz-Marzán,et al.  Nanometals: Formation and color , 2004 .

[22]  M. Kohl,et al.  Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. , 1998, Physics in medicine and biology.

[23]  Cesare Umeton,et al.  Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials , 2011 .

[24]  Wei Zhang,et al.  Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. , 2006, Nano letters.

[25]  Oleg D. Lavrentovich,et al.  Oily streaks and focal conic domains in Lα lyotropic liquid crystals , 1991 .

[26]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[27]  Peter Palffy-Muhoray,et al.  Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers , 2001 .

[28]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[29]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[30]  S. Singamaneni,et al.  Gold nanorods as nanotransducers to monitor the growth and swelling of ultrathin polymer films , 2012, Nanotechnology.

[31]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[32]  Naomi J Halas,et al.  Theranostic nanoshells: from probe design to imaging and treatment of cancer. , 2011, Accounts of chemical research.

[33]  Xiaohua Huang,et al.  Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications , 2009, Advanced materials.

[34]  Weitz,et al.  Particle-stabilized defect gel in cholesteric liquid crystals , 1999, Science.