Berwald type inequality for Sugeno integral

Abstract Nonadditive measure is a generalization of additive probability measure. Sugeno integral is a useful tool in several theoretical and applied statistics which has been built on non-additive measure. Integral inequalities play important roles in classical probability and measure theory. The classical Berwald integral inequality is one of the famous inequalities. This inequality turns out to have interesting applications in information theory. In this paper, Berwald type inequality for the Sugeno integral based on a concave function is studied. Several examples are given to illustrate the validity of this inequality. Finally, a conclusion is drawn and a problem for further investigations is given.

[1]  Radko Mesiar,et al.  Measure-based aggregation operators , 2004, Fuzzy Sets Syst..

[2]  Radko Mesiar,et al.  New general extensions of Chebyshev type inequalities for Sugeno integrals , 2009, Int. J. Approx. Reason..

[3]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[4]  Yao Ouyang,et al.  Fuzzy Chebyshev type inequality , 2008, Int. J. Approx. Reason..

[5]  A. Flores-Franulic,et al.  A Jensen type inequality for fuzzy integrals , 2007, Inf. Sci..

[6]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[7]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[8]  Radko Mesiar,et al.  An inequality related to Minkowski type for Sugeno integrals , 2010, Inf. Sci..

[9]  R. Mesiar,et al.  CHAPTER 33 – Monotone Set Functions-Based Integrals , 2002 .

[10]  Peter Struk,et al.  Extremal fuzzy integrals , 2006, Soft Comput..

[11]  Endre Pap,et al.  Handbook of measure theory , 2002 .

[12]  E. Pap Null-Additive Set Functions , 1995 .

[13]  Gregory T. Adams,et al.  The fuzzy integral , 1980 .

[14]  Yurilev Chalco-Cano,et al.  H-continuity of fuzzy measures and set defuzzification , 2006, Fuzzy Sets Syst..

[15]  Radko Mesiar,et al.  General Minkowski type inequalities for Sugeno integrals , 2010, Fuzzy Sets Syst..

[16]  Didier Dubois,et al.  Qualitative Decision Theory with Sugeno Integrals , 1998, UAI.

[17]  D. Varberg Convex Functions , 1973 .

[18]  Yurilev Chalco-Cano,et al.  Sugeno Integral and Geometric Inequalities , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[19]  A. Flores-Franulic,et al.  The fuzzy integral for monotone functions , 2007, Appl. Math. Comput..

[20]  Radko Mesiar,et al.  General Chebyshev type inequalities for Sugeno integrals , 2009, Fuzzy Sets Syst..

[21]  A. Flores-Franulic,et al.  A Chebyshev type inequality for fuzzy integrals , 2007, Appl. Math. Comput..

[22]  Radko Mesiar,et al.  Fuzzy integrals and linearity , 2008, Int. J. Approx. Reason..

[23]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[24]  Y. Tong,et al.  Convex Functions, Partial Orderings, and Statistical Applications , 1992 .

[25]  Yao Ouyang,et al.  Sugeno integral of monotone functions based on Lebesgue measure , 2008, Comput. Math. Appl..