Logarithmic Sobolev Inequalities for Some Nonlinear Pde's
暂无分享,去创建一个
[1] Amiel Feinstein,et al. Information and information stability of random variables and processes , 1964 .
[2] École d'été de probabilités de Saint-Flour,et al. Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .
[3] I. Csiszár. Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .
[4] S. Benachour,et al. Nonlinear self-stabilizing processes – II: Convergence to invariant probability , 1998 .
[5] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[6] Jim Freeman. Probability Metrics and the Stability of Stochastic Models , 1991 .
[7] J. Azéma,et al. Séminaire de Probabilités XIX 1983/84 , 1985 .
[8] A. Sznitman. Topics in propagation of chaos , 1991 .
[9] Emanuele Caglioti,et al. A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media , 1998 .
[10] D. Talay,et al. Nonlinear self-stabilizing processes – I Existence, invariant probability, propagation of chaos , 1998 .
[11] Ofer Zeitouni,et al. Increasing propagation of chaos for mean field models , 1999 .
[12] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[13] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities , 1999 .
[14] S. Bobkov,et al. Hypercontractivity of Hamilton-Jacobi equations , 2001 .
[15] I. Holopainen. Riemannian Geometry , 1927, Nature.