From NURBS to NURPS geometries

Abstract Quadratic Powell–Sabin splines and their rational extension, the so-called NURPS surfaces, are an interesting alternative for classical tensor-product NURBS in the context of isogeometric analysis, because they allow the use of local refinements while retaining a B-spline like representation and exact description of conic sections. In this paper we present a simple and effective strategy to convert a given planar geometry defined by a quadratic NURBS representation into a NURPS representation, suitable for the analysis.

[1]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[2]  Paul Dierckx,et al.  NURPS for special effects and quadrics , 2001 .

[3]  Paul Dierckx,et al.  From PS-splines to NURPS , 2000 .

[4]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[5]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[6]  Tom Lyche,et al.  Locally Refinable Splines over Box-Partitions , 2012 .

[7]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[8]  Paul Dierckx,et al.  Surface fitting using convex Powell-Sabin splines , 1994 .

[9]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[10]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[11]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[12]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[13]  Bert Jüttler,et al.  Enhancing isogeometric analysis by a finite element-based local refinement strategy , 2012 .

[14]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[15]  Ricardo Baeza-Yates,et al.  Computer Science 2 , 1994 .

[16]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[17]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[18]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[19]  Ming-Jun Lai,et al.  On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .

[20]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[21]  Hendrik Speleers,et al.  Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..

[22]  Paul Sablonnière,et al.  Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .

[23]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[24]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[25]  Carla Manni,et al.  Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..

[26]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[27]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[28]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[29]  P. Gould Introduction to Linear Elasticity , 1983 .

[30]  Adhemar Bultheel,et al.  On the choice of the PS-triangles , 2003 .

[31]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .