From NURBS to NURPS geometries
暂无分享,去创建一个
[1] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[2] Paul Dierckx,et al. NURPS for special effects and quadrics , 2001 .
[3] Paul Dierckx,et al. From PS-splines to NURPS , 2000 .
[4] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[5] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[6] Tom Lyche,et al. Locally Refinable Splines over Box-Partitions , 2012 .
[7] Régis Duvigneau,et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .
[8] Paul Dierckx,et al. Surface fitting using convex Powell-Sabin splines , 1994 .
[9] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[10] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[11] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[12] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[13] Bert Jüttler,et al. Enhancing isogeometric analysis by a finite element-based local refinement strategy , 2012 .
[14] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[15] Ricardo Baeza-Yates,et al. Computer Science 2 , 1994 .
[16] Paul Dierckx,et al. Algorithms for surface fitting using Powell-Sabin splines , 1992 .
[17] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[18] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[19] Ming-Jun Lai,et al. On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .
[20] Hendrik Speleers,et al. Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .
[21] Hendrik Speleers,et al. Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..
[22] Paul Sablonnière,et al. Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .
[23] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[24] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[25] Carla Manni,et al. Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..
[26] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[27] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[28] Carla Manni,et al. Generalized B-splines as a tool in Isogeometric Analysis , 2011 .
[29] P. Gould. Introduction to Linear Elasticity , 1983 .
[30] Adhemar Bultheel,et al. On the choice of the PS-triangles , 2003 .
[31] M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .