A constraint consensus memetic algorithm for solving constrained optimization problems

Constraint handling is an important aspect of evolutionary constrained optimization. Currently, the mechanism used for constraint handling with evolutionary algorithms mainly assists the selection process, but not the actual search process. In this article, first a genetic algorithm is combined with a class of search methods, known as constraint consensus methods, that assist infeasible individuals to move towards the feasible region. This approach is also integrated with a memetic algorithm. The proposed algorithm is tested and analysed by solving two sets of standard benchmark problems, and the results are compared with other state-of-the-art algorithms. The comparisons show that the proposed algorithm outperforms other similar algorithms. The algorithm has also been applied to solve a practical economic load dispatch problem, where it also shows superior performance over other algorithms.

[1]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[2]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[3]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[4]  H.H. Happ,et al.  Optimal power dispatchߞA comprehensive survey , 1977, IEEE Transactions on Power Apparatus and Systems.

[5]  H. L. Happ,et al.  OPTIMAL POWER DISPATCH -A COMPREHENSIVE SURVEY , 1977 .

[6]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Vipin Kumar,et al.  Algorithms for Constraint-Satisfaction Problems: A Survey , 1992, AI Mag..

[9]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[10]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[11]  Tjalling J. Ypma,et al.  Historical Development of the Newton-Raphson Method , 1995, SIAM Rev..

[12]  Y. Censor,et al.  Parallel Optimization: Theory, Algorithms, and Applications , 1997 .

[13]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[14]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[15]  Anil K. Jain,et al.  PRODUCTION SCHEDULING/RESCHEDULING IN FLEXIBLE MANUFACTURING , 1997 .

[16]  Chris N. Potts,et al.  Constraint satisfaction problems: Algorithms and applications , 1999, Eur. J. Oper. Res..

[17]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[18]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[19]  A. E. Eiben,et al.  Constraint-satisfaction problems. , 2000 .

[20]  Yair Censor,et al.  Component averaging: An efficient iterative parallel algorithm for large and sparse unstructured problems , 2001, Parallel Comput..

[21]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[22]  Yair Censor,et al.  The Least-Intensity Feasible Solution for Aperture-Based Inverse Planning in Radiation Therapy , 2003, Ann. Oper. Res..

[23]  John W. Chinneck The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs , 2004, INFORMS J. Comput..

[24]  Carlos A. Coello Coello,et al.  A simple multimembered evolution strategy to solve constrained optimization problems , 2005, IEEE Transactions on Evolutionary Computation.

[25]  Carlos A. Coello Coello,et al.  Modified Differential Evolution for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[26]  C. Coello,et al.  Cultured differential evolution for constrained optimization , 2006 .

[27]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[28]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[29]  John W. Chinneck,et al.  Feasibility and Infeasibility in Optimization:: Algorithms and Computational Methods , 2007 .

[30]  Keshav P. Dahal,et al.  Evolutionary hybrid approaches for generation scheduling in power systems , 2007, Eur. J. Oper. Res..

[31]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[32]  Yuren Zhou,et al.  Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[33]  Yuren Zhou,et al.  An orthogonal design based constrained evolutionary optimization algorithm , 2007 .

[34]  Jin Xu,et al.  A genetic algorithm for solving multi-constrained function optimization problems based on KS function , 2007, 2007 IEEE Congress on Evolutionary Computation.

[35]  Walid Ibrahim,et al.  Improving solver success in reaching feasibility for sets of nonlinear constraints , 2008, Comput. Oper. Res..

[36]  Yuren Zhou,et al.  An Adaptive Tradeoff Model for Constrained Evolutionary Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[37]  Cheng-Chien Kuo,et al.  A Novel Coding Scheme for Practical Economic Dispatch by Modified Particle Swarm Approach , 2008, IEEE Transactions on Power Systems.

[38]  M. Pandit,et al.  Self-Organizing Hierarchical Particle Swarm Optimization for Nonconvex Economic Dispatch , 2008, IEEE Transactions on Power Systems.

[39]  Gregory W. Corder,et al.  Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach , 2009 .

[40]  Carlos A. Coello Coello,et al.  Boundary Search for Constrained Numerical Optimization Problems With an Algorithm Inspired by the Ant Colony Metaphor , 2009, IEEE Transactions on Evolutionary Computation.

[41]  Gary G. Yen,et al.  An Adaptive Penalty Formulation for Constrained Evolutionary Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[42]  J.G. Vlachogiannis,et al.  Economic Load Dispatch—A Comparative Study on Heuristic Optimization Techniques With an Improved Coordinated Aggregation-Based PSO , 2009, IEEE Transactions on Power Systems.

[43]  P. N. Suganthan,et al.  Ensemble of Constraint Handling Techniques , 2010, IEEE Transactions on Evolutionary Computation.

[44]  Tetsuyuki Takahama,et al.  Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation , 2010, IEEE Congress on Evolutionary Computation.

[45]  Tapabrata Ray,et al.  An adaptive differential evolution algorithm and its performance on real world optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[46]  Yong Wang,et al.  Constrained Evolutionary Optimization by Means of ( + )-Differential Evolution and Improved Adaptive Trade-Off Model , 2011, Evolutionary Computation.

[47]  Ruhul A. Sarker,et al.  GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[48]  Ruhul A. Sarker,et al.  Differential evolution combined with constraint consensus for constrained optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[49]  Danushka Bollegala,et al.  An adaptive differential evolution algorithm , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[50]  Ruhul A. Sarker,et al.  Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[51]  Ruhul A. Sarker,et al.  GA with a new multi-parent crossover for constrained optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[52]  Weerakorn Ongsakul,et al.  SELF‐ORGANIZING HIERARCHICAL PARTICLE SWARM OPTIMIZATION WITH TIME‐VARYING ACCELERATION COEFFICIENTS FOR ECONOMIC DISPATCH WITH VALVE POINT EFFECTS AND MULTIFUEL OPTIONS , 2011 .

[53]  Ruhul A. Sarker,et al.  Multi-operator based evolutionary algorithms for solving constrained optimization problems , 2011, Comput. Oper. Res..

[54]  Yong Wang,et al.  A Dynamic Hybrid Framework for Constrained Evolutionary Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[55]  Yong Wang,et al.  Combining Multiobjective Optimization With Differential Evolution to Solve Constrained Optimization Problems , 2012, IEEE Transactions on Evolutionary Computation.

[56]  Tom Fearn,et al.  Particle Swarm Optimisation , 2014 .

[57]  N. Hansen,et al.  Markov Chain Analysis of Cumulative Step-Size Adaptation on a Linear Constrained Problem , 2015, Evolutionary Computation.

[58]  John W. Chinneck,et al.  Feasibility And Infeasibility In Optimization , 2015 .