Accurate representation of geostrophic and hydrostatic balance in unstructured mesh finite element ocean modelling

Abstract Accurate representation of geostrophic and hydrostatic balance is an essential requirement for numerical modelling of geophysical flows. Potentially, unstructured mesh numerical methods offer significant benefits over conventional structured meshes, including the ability to conform to arbitrary bounding topography in a natural manner and the ability to apply dynamic mesh adaptivity. However, there is a need to develop robust schemes with accurate representation of physical balance on arbitrary unstructured meshes. We discuss the origin of physical balance errors in a finite element discretisation of the Navier–Stokes equations using the fractional timestep pressure projection method. By considering the Helmholtz decomposition of forcing terms in the momentum equation, it is shown that the components of the buoyancy and Coriolis accelerations that project onto the non-divergent velocity tendency are the small residuals between two terms of comparable magnitude. Hence there is a potential for significant injection of imbalance by a numerical method that does not compute these residuals accurately. This observation is used to motivate a balanced pressure decomposition method whereby an additional “balanced pressure” field, associated with buoyancy and Coriolis accelerations, is solved for at increased accuracy and used to precondition the solution for the dynamical pressure. The utility of this approach is quantified in a fully non-linear system in exact geostrophic balance. The approach is further tested via quantitative comparison of unstructured mesh simulations of the thermally driven rotating annulus against laboratory data. Using a piecewise linear discretisation for velocity and pressure (a stabilised P1P1 discretisation), it is demonstrated that the balanced pressure decomposition method is required for a physically realistic representation of the system.

[1]  W. D. Jackson,et al.  A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus , 1985 .

[2]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[3]  Kathryn S. McKinley,et al.  Hoard: a scalable memory allocator for multithreaded applications , 2000, SIGP.

[4]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[5]  George L. Mellor,et al.  The Pressure Gradient Conundrum of Sigma Coordinate Ocean Models , 1994 .

[6]  Matthew D. Piggott,et al.  Conservative interpolation between unstructured meshes via supermesh construction , 2009 .

[7]  Patrick E. Farrell,et al.  Conservative interpolation between volume meshes by local Galerkin projection , 2011 .

[8]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[9]  Jean-François Remacle,et al.  A multi-scale model of the hydrodynamics of the whole Great Barrier Reef , 2008 .

[10]  John Marshall,et al.  Convection with Rotation in a Neutral Ocean: A Study of Open-Ocean Deep Convection , 1993 .

[11]  F. Denaro,et al.  On the application of the Helmholtz–Hodge decomposition in projection methods for incompressible flows with general boundary conditions , 2003 .

[12]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[13]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[14]  Jens Schröter,et al.  A finite-element ocean model: principles and evaluation , 2004 .

[15]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[16]  P. Chu,et al.  Hydrostatic correction for sigma coordinate ocean models , 2003 .

[17]  O. C. Zienkiewicz,et al.  Improved finite element forms for the shallow-water wave equations , 1981 .

[18]  P. Read,et al.  Flow transitions resembling bifurcations of the logistic map in simulations of the baroclinic rotating annulus , 2008 .

[19]  Jie Shen,et al.  Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .

[20]  C. C. Pain,et al.  A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling , 2008, 0805.4380.

[21]  Hermann Weyl,et al.  The method of orthogonal projection in potential theory , 1940 .

[22]  P. Hignett Characteristics of amplitude vacillation in a differentially heated rotating fluid annulus , 1985 .

[23]  Catherine Jeandel,et al.  The AMANDES tidal model for the Amazon estuary and shelf , 2010 .

[24]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[25]  P. Read,et al.  Wave interactions and the transition to chaos of baroclinic waves in a thermally driven rotating annulus , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Peter L. Read,et al.  A combined laboratory and numerical study of heat transport by baroclinic eddies and axisymmetric flows , 2003, Journal of Fluid Mechanics.

[27]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[28]  C. R. Wilson,et al.  Modelling multiple-material flows on adaptive unstructured meshes. , 2009 .

[29]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[30]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[31]  C. C. Pain,et al.  h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .

[32]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[33]  Christopher C. Pain,et al.  A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .

[34]  P. Jonas,et al.  A combined laboratory and numerical study of fully developed steady baroclinic waves in a cylindrical annulus , 1981 .

[35]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[36]  Haosheng Huang,et al.  A finite volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models , 2007 .

[37]  J. Berntsen,et al.  Estimating the internal pressure gradient errors in a σ-coordinate ocean model for the Nordic Seas , 2007 .

[38]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[39]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[40]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[41]  Matthew D. Piggott,et al.  The impact of mesh adaptivity on the gravity current front speed in a two-dimensional lock-exchange , 2011 .

[42]  Christopher C. Pain,et al.  Unstructured adaptive meshes for ocean modeling , 2013 .

[43]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[44]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[45]  David P. Marshall,et al.  The Relation between Eddy-Induced Transport and Isopycnic Gradients of Potential Vorticity , 1999 .

[46]  Patrick E. Farrell,et al.  Galerkin projection of discrete fields via supermesh construction , 2009 .

[47]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[48]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .

[49]  R. Hide On the effects of rotation on fluid motions in cylindrical containers of various shapes and topological characteristics , 1998 .

[50]  L. Perelman,et al.  Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling , 1997 .

[51]  Raymond Hide,et al.  Sloping convection in a rotating fluid , 1975 .

[52]  C.R.E. de Oliveira,et al.  Three-dimensional unstructured mesh ocean modelling , 2005 .

[53]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[54]  Eric Deleersnijder,et al.  A finite element method for solving the shallow water equations on the sphere , 2009 .

[55]  I. Babuska Error-bounds for finite element method , 1971 .

[56]  C. C. Pain,et al.  Solving the Poisson equation on small aspect ratio domains using unstructured meshes , 2009, 0912.1976.

[57]  M. Piggott,et al.  A Nonhydrostatic Finite-Element Model for Three-Dimensional Stratified Oceanic Flows. Part II: Model Validation , 2004 .

[58]  R. Salmon,et al.  Geophysical Fluid Dynamics , 2019, Classical Mechanics in Geophysical Fluid Dynamics.

[59]  Sonya Legg,et al.  Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models☆ , 2006 .

[60]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[61]  John M. Gary,et al.  Estimate of Truncation Error in Transformed Coordinate, Primitive Equation Atmospheric Models , 1973 .

[62]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[63]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[64]  Jens Schröter,et al.  Evaluation of an eddy-permitting finite-element ocean model in the North Atlantic , 2004 .

[65]  Eihachiro Nakamae,et al.  Tetrahedral elements generation using topological mapping and space dividing for 3-D magnetic field FEM , 1990 .

[66]  J. Schröter,et al.  Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model , 2009 .

[67]  S. Giddings,et al.  High-resolution simulations of a macrotidal estuary using SUNTANS , 2009 .

[68]  Simona Perotto,et al.  Reliability and efficiency of an anisotropic zienkiewicz-zhu error estimator , 2006 .

[69]  Colin J. Cotter,et al.  LBB stability of a mixed Galerkin finite element pair for fluid flow simulations , 2009, J. Comput. Phys..

[70]  M. Piggott,et al.  Idealised flow past an island in a dynamically adaptive finite element model , 2010 .

[71]  William Gropp,et al.  Modern Software Tools in Scientific Computing , 1994 .

[72]  D. Marshall,et al.  Momentum Balance of the Wind-Driven and Meridional Overturning Circulation , 2011 .

[73]  Colin J. Cotter,et al.  Numerical wave propagation for the triangular P1DG-P2 finite element pair , 2010, J. Comput. Phys..

[74]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .