Signal processing techniques for maritime surveillance with skywave radar

Detection and tracking of maritime targets using skywave radar is influenced by the propagation medium, interference environment and target scenario. Acquired data display distortion, fading, non-stationarity, and heterogeneity. Brief examples of data are given, then signal processing techniques are developed to provide robust adaptive Doppler processing, rejection of impulsive noise, improved CFAR using the Weibull distribution with robust two-parameter estimation, and a simple track-before-detect scheme for enhancing small SNR target detection performance.

[1]  Dmitry M. Malioutov,et al.  A variational technique for source localization based on a sparse signal reconstruction perspective , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Hermann Rohling,et al.  Radar CFAR Thresholding in Clutter and Multiple Target Situations , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[3]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[4]  G.A. Fabrizio,et al.  Robust adaptive beamforming for HF surface wave over-the-horizon radar , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[5]  R. Walker,et al.  Linear-predictive data extrapolation narrow-band spectral estimation , 1988, Proc. IEEE.

[6]  J. Parent Statistical study of the spectral broadening of skywave signals backscattered by the sea surface: application to RMS wave height measurement with a skywave radar , 1989 .

[7]  M. Skolnik,et al.  Over-the-Horizon radar in the HF band , 1974 .

[8]  Mike D. E. Turley,et al.  Impulsive noise rejection in HF radar using a linear prediction technique , 2003, 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695).

[9]  W. R. Wallace,et al.  The use of track-before-detect in pulse-Doppler radar , 2002, RADAR 2002.

[10]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[11]  J. Barnum,et al.  Ship detection with high-resolution HF skywave radar , 1986 .

[12]  Sergey V. Fridman,et al.  SIFTER: Signal inversion for target extraction and registration , 2004 .

[13]  M.D.E. Turley Hybrid CFAR techniques for HF radar , 1997 .

[14]  N. Levanon,et al.  Order statistics CFAR for Weibull background , 1990 .

[15]  David N. Swingler,et al.  Line-array beamforming using linear prediction for aperture interpolation and extrapolation , 1989, IEEE Trans. Acoust. Speech Signal Process..

[16]  Leonid I. Perlovsky,et al.  Improved relocatable over‐the‐horizon radar detection and tracking using the maximum likelihood adaptive neural system algorithm , 1998 .

[17]  S. J. Anderson,et al.  A unified approach to detection, classification, and correction of ionospheric distortion in HF sky wave radar systems , 1998 .

[18]  D. Crombie,et al.  Doppler Spectrum of Sea Echo at 13.56 Mc./s. , 1955, Nature.

[19]  Jeffrey L. Krolik,et al.  A performance evaluation of autoregressive clutter mitigation methods for over-the-horizon radar , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[20]  R. I. Barnes Automated propagation advice for OTHR ship detection , 1996 .

[21]  Albert H Nuttall,et al.  Spectral Analysis of a Univariate Process with Bad Data Points, via Maximum Entropy and Linear Predictive Techniques , 1976 .

[22]  Satya D. Dubey,et al.  Some Percentile Estimators for Weibull Parameters , 1967 .

[23]  J. Parent,et al.  A method to correct HF skywave backscattered signals for ionospheric frequency modulation , 1988 .