Low-energy spectral features of supernova (anti)neutrinos in inverted hierarchy

In the dense supernova core, self-interactions may align the flavor polarization vectors of {nu} and {nu} and induce collective flavor transformations. Different alignment Ansaetze are known to describe approximately the phenomena of synchronized or bipolar oscillations and the split of {nu} energy spectra. We discuss another phenomenon observed in some numerical experiments in inverted hierarchy, showing features akin to a low-energy split of {nu} spectra. The phenomenon appears to be approximately described by another alignment Ansatz which, in the considered scenario, reduces the (nonadiabatic) dynamics of all energy modes to only two {nu} plus two {nu} modes. The associated spectral features, however, appear to be fragile when passing from single to multiangle simulations.