The Principle of Covariance and the Hamiltonian Formulation of General Relativity
暂无分享,去创建一个
[1] S. Hawking,et al. General Relativity; an Einstein Centenary Survey , 1979 .
[2] C. Cremaschini,et al. Manifest Covariant Hamiltonian Theory of General Relativity , 2016, 1609.04422.
[3] R. Oliveri,et al. Boundary effects in General Relativity with tetrad variables , 2019, General Relativity and Gravitation.
[4] Claudio Cremaschini,et al. Space-Time Second-Quantization Effects and the Quantum Origin of Cosmological Constant in Covariant Quantum Gravity , 2018, Symmetry.
[5] Paul Adrien Maurice Dirac. Generalized Hamiltonian dynamics , 1950 .
[6] C. Cremaschini,et al. Hamiltonian approach to GR – Part 1: covariant theory of classical gravity , 2016, 1609.04426.
[7] J. York. Boundary terms in the action principles of general relativity , 1986 .
[8] S. Chakraborty. Boundary terms of the Einstein-Hilbert action , 2016, 1607.05986.
[9] A. Palatini. Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton , 1919 .
[10] A. Redelbach,et al. Covariant Hamiltonian Field Theory , 2008, 0811.0508.
[11] Geometry of Lagrangian First-order Classical Field Theories , 1995, dg-ga/9505004.
[12] Claudio Cremaschini,et al. Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity , 2017, Entropy.
[13] S A Bludman,et al. Theoretical Physics , 1932, Nature.
[14] G. Sardanashvily. Generalized Hamiltonian Formalism For Field Theory , 1995 .
[15] C. Cremaschini,et al. Hamiltonian approach to GR – Part 2: covariant theory of quantum gravity , 2016, 1609.04428.
[16] C. Isham. Canonical quantum gravity and the problem of time , 1992, gr-qc/9210011.
[17] Claudio Cremaschini,et al. The Heisenberg Indeterminacy Principle in the Context of Covariant Quantum Gravity , 2020, Entropy.
[18] A. Einstein. The Meaning of Relativity , 1946 .
[19] Claudio Cremaschini,et al. Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory , 2018, Entropy.
[20] Geometry of multisymplectic Hamiltonian first order field theories , 2000, math-ph/0004005.
[21] Théophile De Donder,et al. Théorie invariantive du calcul des variations , 1936 .
[22] Paul Adrien Maurice Dirac,et al. The theory of gravitation in Hamiltonian form , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[23] C. Cremaschini,et al. Theory of Nonlocal Point Transformations in General Relativity , 2016 .
[24] Hermann Weyl,et al. Geodesic Fields in the Calculus of Variation for Multiple Integrals , 1935 .
[25] Claudio Cremaschini,et al. Classical Variational Theory of the Cosmological Constant and Its Consistency with Quantum Prescription , 2020, Symmetry.
[26] C. Cremaschini,et al. Synchronous Lagrangian variational principles in General Relativity , 2015, 1609.04418.
[27] Stanley Deser,et al. Dynamical Structure and Definition of Energy in General Relativity , 1959 .
[28] D. Saunders. The Geometry of Jet Bundles , 1989 .
[29] M. Born. Space–Time Structure , 1951, Nature.