First-principles study on the structural and electronic properties of metallic HfH2 under pressure

The crystal structures and properties of hafnium hydride under pressure are explored using the first-principles calculations based on density function theory. The material undergoes pressure-induced structural phase transition I4/mmm→Cmma→P21/m at 180 and 250 GPa, respectively, and all of these structures are metallic. The superconducting critical temperature Tc values of I4/mmm, Cmma, and P21/m are 47–193 mK, 5.99–8.16 K and 10.62–12.8 K at 1 atm, 180 and 260 GPa, respectively. Furthermore, the bonding nature of HfH2 is investigated with the help of the electron localization function, the difference charge density and Bader charge analyses, which show that HfH2 is classified as a ionic crystal with the charges transferring from Hf atom to H.

[1]  Hongyu,et al.  Pressure-induced decomposition of solid hydrogen sulfide , 2015, 1501.01784.

[2]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[3]  G. Sandrock,et al.  Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates , 2002 .

[4]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[5]  T. W. Barbee,et al.  First-principles prediction of high-temperature superconductivity in metallic hydrogen , 1989, Nature.

[6]  N. Ashcroft,et al.  METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR. , 1968 .

[7]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[8]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[9]  F. Escudero,et al.  Atoms in molecules , 1982 .

[10]  A. P. Drozdov,et al.  Conventional superconductivity at 190 K at high pressures , 2014, 1412.0460.

[11]  David J. Singh,et al.  Electronic structure and energetics of the tetragonal distortion for TiH 2 , ZrH 2 , and HfH 2 : A first-principles study , 2009 .

[12]  W. Grochala,et al.  Superconductivity in transition metals , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Paul Loubeyre,et al.  Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen , 2002, Nature.

[14]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[15]  Jorge Íñiguez,et al.  Structure and hydrogen dynamics of pure and Ti-doped sodium alanate , 2004, cond-mat/0401161.

[16]  Da Li,et al.  Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity , 2014, Scientific Reports.

[17]  Y. Kawazoe,et al.  A molecular dynamics study of thermal conductivity of zirconium hydride , 2003 .

[18]  Jiehua Zhu,et al.  National Natural Science Foundation of China (NSFC) , 2013 .

[19]  C. Satterthwaite,et al.  SUPERCONDUCTIVITY OF HYDRIDES AND DEUTERIDES OF THORIUM. , 1970 .

[20]  B. D. Craft,et al.  Electronic structure of zirconium hydride: A proton NMR study , 1983 .

[21]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Yanming Ma,et al.  Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure , 2007 .

[23]  Xiaoli Huang,et al.  Structural stability and compressive behavior of ZrH2 under hydrostatic pressure and nonhydrostatic pressure , 2014 .

[24]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[25]  Yanming Ma,et al.  Pressure induced phase transitions in TiH2 , 2013 .

[26]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[27]  Shinsuke Yamanaka,et al.  Study on the hydrogen solubility in zirconium alloys , 1997 .

[28]  Xavier Ficquet,et al.  International Congress on Advances in Nuclear Power Plants (ICAPP) , 2011 .

[29]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[30]  S. S. Sidhu,et al.  An X‐Ray Diffraction Study of the Hafnium‐Hydrogen System , 1952 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  A. Remhof,et al.  Hydrogen in thin epitaxial metal films and superlattices: structure, magnetism, and transport , 1999 .

[33]  Y. Chabal,et al.  Materials for Hydrogen Storage , 2015 .

[34]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Tetsushi Matsuda,et al.  Characteristics of zirconium hydride and deuteride , 2002 .

[36]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[37]  R. Dynes,et al.  Transition temperature of strong-coupled superconductors reanalyzed , 1975 .

[38]  S. Sinogeikin,et al.  Equation of state of TiH2 up to 90 GPa: A synchrotron x-ray diffraction study and ab initio calculations , 2010 .