The retrieval of warm rain from CloudSat

[1] An algorithm for the retrieval of warm rain over oceans for CloudSat that uses ancillary information from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is presented. The method builds upon the architecture of the standard CloudSat 2C-RAIN-PROFILE product. Several general enhancements of that architecture have been made, including the implementation of a fast two-stream multiple-scattering radar model and a detailed error characterization. The algorithm has also been modified to specifically target the retrieval of warm rain by using ancillary MODIS visible optical depth observations to construct a parameterization of the cloud water path, implementing a model of the evaporation of rain below cloud base, and introducing a realistic representation of warm raindrop size distributions. With these important algorithm modifications, the CloudSat 2C-RAIN-PROFILE product is ideally suited to examine the distribution and magnitude of light rain over oceans.

[1]  Graeme L. Stephens,et al.  Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes , 1978 .

[2]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[3]  L. Battan,et al.  A STUDY OF CONVECTIVE PRECIPITATION BASED ON CLOUD AND RADAR OBSERVATIONS , 1956 .

[4]  Zhanqing Li,et al.  A study of warm rain detection using A‐Train satellite data , 2011, Geophysical Research Letters.

[5]  Thomas T. Wilheit,et al.  Some comments on passive microwave measurement of rain , 1986 .

[6]  Grant W. Petty,et al.  Frequencies and Characteristics of Global Oceanic Precipitation from Shipboard Present-Weather Reports , 1995 .

[7]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[8]  Sergey Y. Matrosov,et al.  Potential for attenuation‐based estimations of rainfall rate from CloudSat , 2007 .

[9]  Christian D. Kummerow,et al.  The Remote Sensing of Clouds and Precipitation from Space: A Review , 2007 .

[10]  Christian D. Kummerow,et al.  An Observationally Generated A Priori Database for Microwave Rainfall Retrievals , 2011 .

[11]  Steven Platnick,et al.  Vertical Photon Transport in Cloud Remote Sensing Problems , 2013 .

[12]  Robert A. Houze,et al.  Comparison of Radar Data from the TRMM Satellite and Kwajalein Oceanic Validation Site , 2000 .

[13]  R. Gunn,et al.  THE TERMINAL VELOCITY OF FALL FOR WATER DROPLETS IN STAGNANT AIR , 1949 .

[14]  Zhien Wang,et al.  Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) , 2008 .

[15]  Steven Platnick,et al.  Impact of three‐dimensional radiative effects on satellite retrievals of cloud droplet sizes , 2006 .

[16]  A. Bodas‐Salcedo,et al.  Dreary state of precipitation in global models , 2010 .

[17]  R. Rauber,et al.  Precipitation Characteristics of Trade Wind Clouds during RICO Derived from Radar, Satellite, and Aircraft Measurements , 2006 .

[18]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[19]  Steven D. Miller,et al.  CloudSat Precipitation Profiling Algorithm—Model Description , 2010 .

[20]  Walter Hitschfeld,et al.  ERRORS INHERENT IN THE RADAR MEASUREMENT OF RAINFALL AT ATTENUATING WAVELENGTHS , 1954 .

[21]  Chuntao Liu,et al.  “Warm Rain” in the Tropics: Seasonal and Regional Distributions Based on 9 yr of TRMM Data , 2009 .

[22]  Christian D. Kummerow,et al.  Rainfall Climate Regimes: The Relationship of Regional TRMM Rainfall Biases to the Environment , 2006 .

[23]  Simone Tanelli,et al.  CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Graeme L. Stephens,et al.  An Estimation-Based Precipitation Retrieval Algorithm for Attenuating Radars , 2002 .

[25]  M. Katsumata,et al.  Climatology of warm rain and associated latent heating derived from TRMM PR observations. , 2009 .

[26]  Phillip A. Arkin,et al.  The Relationship between Fractional Coverage of High Cloud and Rainfall Accumulations during GATE over the B-Scale Array , 1979 .

[27]  David A. Short,et al.  TRMM Radar Observations of Shallow Precipitation over the Tropical Oceans , 2000 .

[28]  Shaun Lovejoy,et al.  The delineation of rain areas from visible and IR satellite data for GATE and mid‐latitudes , 1979 .

[29]  Steven D. Miller,et al.  Rainfall retrieval over the ocean with spaceborne W‐band radar , 2009 .

[30]  C. Bretherton,et al.  Reflectivity and rain rate in and below drizzling stratocumulus , 2004 .

[31]  Alessandro Battaglia,et al.  Fast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream Approximation , 2008 .

[32]  Christian D. Kummerow,et al.  Multisensor satellite observations of aerosol effects on warm clouds , 2008 .

[33]  T. L’Ecuyer,et al.  Identifying multiple-scattering-affected profiles in CloudSat observations over the oceans , 2008 .

[34]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  R. Marchand,et al.  Hydrometeor Detection Using Cloudsat—An Earth-Orbiting 94-GHz Cloud Radar , 2008 .

[36]  Ralf Bennartz,et al.  Global assessment of marine boundary layer cloud droplet number concentration from satellite , 2007 .

[37]  M. Lebsock,et al.  Detecting the Ratio of Rain and Cloud Water in Low-Latitude Shallow Marine Clouds , 2010 .

[38]  Tristan S. L'Ecuyer,et al.  The Distribution of Rainfall over Oceans from Spaceborne Radars , 2010 .