Dispersion Simulation in Two‐dimensional Tidal Flow

An accurate numerical method for the mathematical modeling of contaminant dispersion in two‐dimensional tidal currents is developed and applied. The method avoids the excessive numerical damping or oscillations associated with most finite difference and finite element schemes for advection by using a characteristics approach with high order Hermite bicubic interpolation. The split‐operator algorithm, incorporating a Crank‐Nicolson operator for diffusion, provides a relatively simple and economic method for accurate simulation of pollutant dispersion on a fixed, Eulerian mesh. A special procedure for Lagrangian calculation of the dispersion of concentration fields which are small compared to the mesh size simulates the early stages of growth of point source plumes. These various procedures are described in detail, and their performance is demonstrated by application to schematic test cases and to the Bay of Saint‐Brieuc, France.