Improved thermo-mechanical properties by the addition of natural fibres in starch-based sustainable biocomposites

Sustainable biocomposites based on thermoplastic starch copolymers (Mater-Bi KE03B1) and biofibres (cotton, hemp and kenaf) were prepared and characterised in terms of their thermo-mechanical and morphological properties. Biocomposites exhibit improved thermal stability and mechanical properties in comparison with the Mater-Bi KE. Biofibres act as suitable thermal stabilizers for the Mater-Bi KE, by increasing the maximum decomposition temperature and the Ea associated to the thermal decomposition process. Biofibre addition into the Mater-Bi KE results in higher storage modulus and in a reduction of the free-volume-parameter associated to the Mater-Bi KE glass transition. The influence of different biofibres on the thermo-mechanical properties of the biocomposites has been discussed. Hemp and kenaf enhance the thermal stability and reduce the free volume-parameter of Mater-Bi KE more significantly than cotton fibres, although the latter exhibits the highest mechanical performance. These differences may be explained by the improved interaction of lignocellulosic fibres with the Mater-Bi KE, due to the presence of hemicellulose and lignin in their formulation.

[1]  L. Avérous,et al.  Effects of lignin content on the properties of lignocellulose-based biocomposites , 2006 .

[2]  X. Sun,et al.  Starch, Poly(lactic acid), and Poly(vinyl alcohol) Blends , 2003 .

[3]  B. Monties Dosage de la lignine insoluble en milieu acide: influence du prétraitement par hydrolyse acide sur la lignine Klason de bois et de paille , 1984 .

[4]  Maya Jacob John,et al.  Biofibres and Biocomposites , 2008 .

[5]  Xiaodong Cao,et al.  Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites , 2006 .

[6]  V. Davidson,et al.  Degradation of Wheat Starch in a Single Screw Extruder: Characteristics of Extruded Starch Polymers , 1984 .

[7]  L. Avérous,et al.  Properties of thermoplastic blends: starch-polycaprolactone , 2000 .

[8]  H. Bader,et al.  Influence of natural fibres on the mechanical properties of biodegradable polymers. , 1998 .

[9]  R. Wool,et al.  Butyrated kraft lignin as compatibilizing agent for natural fiber reinforced thermoset composites , 2004 .

[10]  V. Álvarez,et al.  Melt rheological behavior of starch‐based matrix composites reinforced with short sisal fibers , 2004 .

[11]  Robert Elias,et al.  Biocomposites Technology, Environmental Credentials and Market Forces , 2006 .

[12]  R. Shogren Poly(ethylene oxide)-coated granular starch-poly(hydroxybutyrate-co-hydroxyvalerate) composite materials , 1995 .

[13]  A. J. Carvalho,et al.  Thermoplastic starch–cellulosic fibers composites: preliminary results , 2001 .

[14]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[15]  Joseph Kost,et al.  Handbook of Biodegradable Polymers , 1998 .

[16]  J. Aguilera,et al.  Changes in the Starch Fraction During Extrusion-cooking of Corn , 1983 .

[17]  Thomas Lampke,et al.  Plant Fibers as Reinforcement for Green Composites , 2005 .

[18]  V. Davidson,et al.  A Model for Mechanical Degradation of Wheat Starch in a Single-Screw Extruder , 1984 .

[19]  R. Reis,et al.  Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability , 2003, Journal of materials science. Materials in medicine.

[20]  Qinglin Wu,et al.  Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis , 2008 .

[21]  H. L. Friedman,et al.  Kinetics and Gaseous Products of Thermal Decomposition of Polymers , 1967 .

[22]  C. Bastioli Properties and applications of Mater-Bi starch-based materials , 1998 .

[23]  O. Theander,et al.  Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber , 1986 .

[24]  M. A. Pèlach,et al.  Biocomposites based on Alfa fibers and starch‐based biopolymer , 2009 .

[25]  R. Shanks,et al.  Composition, structure and thermal degradation of hemp cellulose after chemical treatments , 2005 .

[26]  U. Ishiaku,et al.  Effect of starch predrying on the mechanical properties of starch/poly(ε‐caprolactone) composites , 2003 .

[27]  Raymond M. Fuoss,et al.  Electrical Properties of Solids. VIII. Dipole Moments in Polyvinyl Chloride-Diphenyl Systems* , 1941 .

[28]  T. Higuchi,et al.  Chemical properties of milled wood lignin of grasses , 1967 .

[29]  J. Charlesworth Deconvolution of overlapping relaxations in dynamic mechanical spectra , 1993 .

[30]  J. San Román,et al.  Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. , 2002, Biomaterials.

[31]  R. Smith Biodegradable polymers for industrial applications , 2005 .

[32]  S. Karlsson,et al.  Assessing the Influence of Cotton Fibers on the Degradation in Soil of a Thermoplastic Starch-Based Biopolymer , 2010 .

[33]  Alfonso Jiménez,et al.  Thermal degradation of mixtures of polycaprolactone with cellulose derivatives , 2003 .

[34]  M. Antal,et al.  Cellulose Pyrolysis Kinetics: The Current State of Knowledge , 1995 .

[35]  D. Rosa,et al.  Thermal properties and enzymatic degradation of blends of poly(ε-caprolactone) with starches , 2005 .

[36]  C. Vasile,et al.  Enzymatic degradation of some nanocomposites of poly(vinyl alcohol) with starch , 2008 .

[37]  Vera A. Alvarez,et al.  Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites , 2004 .

[38]  M. Misra,et al.  Natural, Fibers, Biopolymers and Biocomposites , 2009 .

[39]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[40]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[41]  Kerry Kirwan,et al.  Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres , 2005 .

[42]  H. Vogel,et al.  Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten , 1921 .

[43]  E. Chiellini,et al.  Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization. , 2001, Biomacromolecules.

[44]  E. Martuscelli,et al.  Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour , 2000 .

[45]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.

[46]  S. Barnes,et al.  Impact performance of Miscanthus/Novamont Mater-Bi® biocomposites , 2003 .

[47]  R. Reis,et al.  Chemical modification of starch based biodegradable polymeric blends: effects on water uptake, degradation behaviour and mechanical properties , 2000 .

[48]  T. E. Abraham,et al.  Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films , 2006, Biopolymers.

[49]  J. Kenny,et al.  Processing, properties and stability of biodegradable composites based on Mater‐Bi® and cellulose fibres , 2003 .

[50]  Costas Panayiotou,et al.  Processing and characterization of starch/polycaprolactone products , 2002 .

[51]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .