Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex.

During a visual search, information about the visual attributes of an object and associated behavioral requirements is essential for discriminating a target object from others in the visual field. On the other hand, information about the object's position appears to be more important when orienting the eyes toward the target. To understand the neural mechanisms underlying such a transition (i.e., from nonspatial- to spatial-based target selection), we examined the dependence of neuronal activity in the macaque posterior parietal cortex (PPC) on visual sensory properties and ongoing task demands. Monkeys were trained to perform a visual search task in which either a shape or color singleton within an array was the target, depending on the ongoing search dimension. The visual properties and the task demands were manipulated by independently changing the stimulus features (shape and color), singleton type, and search dimension. We found that a subset of PPC neurons significantly discriminated the target from other stimuli only when the target was defined by a particular stimulus dimension and had specific stimulus features, such as a shape-singleton, bar stimulus (condition-dependent target selection), whereas another subset did so irrespective of the stimulus features and the target-defining dimension (condition-independent target selection). There was thus a great deal of variety in the neural representations specifying the locus of the target. The coexistence of these distinctly different types of target-discrimination processes suggests that the PPC may be situated at the level where the transition from nonspatial- to spatial-based target selection takes place.

[1]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[2]  H. Sakata,et al.  Parietal control of hand action , 1994, Current Opinion in Neurobiology.

[3]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[4]  F. Hamker A dynamic model of how feature cues guide spatial attention , 2004, Vision Research.

[5]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[6]  A. Fuchs,et al.  A method for measuring horizontal and vertical eye movement chronically in the monkey. , 1966, Journal of applied physiology.

[7]  A. Sereno,et al.  Attention and memory-related responses of neurons in the lateral intraparietal area during spatial and shape-delayed match-to-sample tasks. , 2006, Journal of neurophysiology.

[8]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[9]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[10]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[11]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[12]  E. Keller,et al.  Saccade target selection in the superior colliculus during a visual search task. , 2002, Journal of neurophysiology.

[13]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[14]  J. Duhamel,et al.  Saccadic Target Selection Deficits after Lateral Intraparietal Area Inactivation in Monkeys , 2002, The Journal of Neuroscience.

[15]  R. Andersen,et al.  Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory. , 1996, Journal of neurophysiology.

[16]  Margaret E. Sereno,et al.  Shape selectivity in primate frontal eye field. , 2008, Journal of neurophysiology.

[17]  Ilya E. Monosov,et al.  Measurements of Simultaneously Recorded Spiking Activity and Local Field Potentials Suggest that Spatial Selection Emerges in the Frontal Eye Field , 2008, Neuron.

[18]  Hidehiko Komatsu,et al.  Target Selection in Area V4 during a Multidimensional Visual Search Task , 2004, The Journal of Neuroscience.

[19]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[20]  R. Andersen,et al.  The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: Divergent cortical projections from cell clusters in the medial pulvinar nucleus , 1985, The Journal of comparative neurology.

[21]  R. Andersen,et al.  Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan. , 1996, Journal of neurophysiology.

[22]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[23]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[24]  T. Moore,et al.  Microstimulation of the frontal eye field and its effects on covert spatial attention. , 2004, Journal of neurophysiology.

[25]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[26]  M. Goldberg,et al.  A Rapid and Precise On-Response in Posterior Parietal Cortex , 2004, The Journal of Neuroscience.

[27]  J. Schall,et al.  Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Hidehiko Komatsu,et al.  Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search , 2006, Experimental Brain Research.

[29]  David J. Freedman,et al.  Experience-dependent representation of visual categories in parietal cortex , 2006, Nature.

[30]  M. A. Steinmetz,et al.  Posterior Parietal Cortex Automatically Encodes the Location of Salient Stimuli , 2005, The Journal of Neuroscience.

[31]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[32]  M. Goldberg,et al.  Activity in the Lateral Intraparietal Area Predicts the Goal and Latency of Saccades in a Free-Viewing Visual Search Task , 2006, The Journal of Neuroscience.

[33]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[34]  Jacqueline Gottlieb,et al.  LIP responses to a popout stimulus are reduced if it is overtly ignored , 2006, Nature Neuroscience.

[35]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. , 2001, Cerebral cortex.

[36]  R. Wurtz,et al.  Visual receptive fields of frontal eye field neurons. , 1973, Brain research.

[37]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[38]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[39]  A. Murata,et al.  Cortical connections of the macaque anterior intraparietal (AIP) area. , 2008, Cerebral cortex.

[40]  F. Bremmer,et al.  Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. , 2002, Cerebral cortex.

[41]  A. Mikami,et al.  Neuronal activity in the frontal eye field of the monkey is modulated while attention is focused on to a stimulus in the peripheral visual field, irrespective of eye movement , 1997, Neuroscience Research.

[42]  Peter Janssen,et al.  Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape , 2007, Neuron.

[43]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[44]  S. R. Lehky,et al.  Comparison of shape encoding in primate dorsal and ventral visual pathways. , 2007, Journal of neurophysiology.

[45]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[47]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[48]  N. P. Bichot,et al.  Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. , 2005, Journal of neurophysiology.

[49]  Michele A. Basso,et al.  Modulation of neuronal activity by target uncertainty , 1997, Nature.

[50]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[51]  Giacomo Rizzolatti,et al.  Neurons responding to visual stimuli in the frontal lobe of macaque monkeys , 1979, Neuroscience Letters.

[52]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[53]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[54]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[55]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[56]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[57]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[58]  Jacqueline Gottlieb,et al.  Integration of Exogenous Input into a Dynamic Salience Map Revealed by Perturbing Attention , 2006, The Journal of Neuroscience.

[59]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[60]  M. Paré,et al.  Temporal processing of saccade targets in parietal cortex area LIP during visual search. , 2007, Journal of neurophysiology.