Pushing for weighted tree automata

A weight normalization procedure, commonly called pushing, is introduced for weighted tree automata (wta) over commutative semifields. The normalization preserves the recognized weighted tree language even for nondeterministic wta, but it is most useful for bottom-up deterministic wta, where it can be used for minimization and equivalence testing. In both applications a careful selection of the weights to be redistributed followed by normalization allows a reduction of the general problem to the corresponding problem for bottom-up deterministic unweighted tree automata. This approach was already successfully used by Mohri and Eisner for the minimization of deterministic weighted string automata. Moreover, the new equivalence test for two wta $M$ and $M'$ runs in time $\mathcal O((\lvert M \rvert + \lvert M'\rvert) \cdot \log {(\lvert Q\rvert + \lvert Q'\rvert)})$, where $Q$ and $Q'$ are the states of $M$ and $M'$, respectively, which improves the previously best run-time $\mathcal O(\lvert M \rvert \cdot \lvert M'\rvert)$.

[1]  U. Hebisch,et al.  Semirings: Algebraic Theory and Applications in Computer Science , 1998 .

[2]  Andreas Maletti Minimizing deterministic weighted tree automata , 2009, Inf. Comput..

[3]  Symeon Bozapalidis Equational Elements in Additive Algebras , 1999, Theory of Computing Systems.

[4]  Werner Kuich Formal Power Series over Trees , 1997, Developments in Language Theory.

[5]  Jason Eisner,et al.  Simpler and More General Minimization for Weighted Finite-State Automata , 2003, NAACL.

[6]  Andreas Maletti,et al.  Backward and forward bisimulation minimization of tree automata , 2009, Theor. Comput. Sci..

[7]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[8]  Heiko Vogler,et al.  Efficient Inference through Cascades of Weighted Tree Transducers , 2010, ACL.

[9]  Christoph Weidenbach,et al.  SPASS Version 3.5 , 2009, CADE.

[10]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[11]  Heiko Vogler,et al.  Determinization of Finite State Weighted Tree Automata , 2003, J. Autom. Lang. Comb..

[12]  Andreas Maletti,et al.  Bisimulation Minimisation for Weighted Tree Automata , 2007, Developments in Language Theory.

[13]  Peter Lammich,et al.  Tree Automata , 2009, Arch. Formal Proofs.

[14]  Helmut Seidl,et al.  Earliest Normal Form and Minimization for Bottom-up Tree Transducers , 2011, Int. J. Found. Comput. Sci..

[15]  Christian Choffrut,et al.  Minimizing subsequential transducers: a survey , 2003, Theor. Comput. Sci..

[16]  Heiko Vogler,et al.  Determinization of Weighted Tree Automata Using Factorizations , 2010, J. Autom. Lang. Comb..

[17]  Florent Jacquemard,et al.  Extended Tree Automata Models for the Verification of Infinite State Systems. (Modèles d'automates d'arbres étendus pour la vérification de systèmes infinis) , 2011 .

[18]  Manfred Droste,et al.  Weighted Tree Automata over Valuation Monoids and Their Characterization by Weighted Logics , 2011, Algebraic Foundations in Computer Science.

[19]  Andreas Maletti,et al.  MAT learners for tree series: an abstract data type and two realizations , 2011, Acta Informatica.

[20]  Symeon Bozapalidis,et al.  The Rank of a Formal Tree Power Series , 1983, Theor. Comput. Sci..

[21]  H. Vogler,et al.  Weighted Tree Automata and Tree Transducers , 2009 .

[22]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[23]  Nils Klarlund,et al.  MONA Version 1.4 - User Manual , 2001 .

[24]  J. Sakarovitch Rational and Recognisable Power Series , 2009 .

[25]  J. Golan Semirings and their applications , 1999 .

[26]  Manfred Droste,et al.  Weighted tree automata and weighted logics , 2006, Theor. Comput. Sci..

[27]  Jean Berstel,et al.  Recognizable Formal Power Series on Trees , 1982, Theor. Comput. Sci..

[28]  Mehryar Mohri,et al.  Finite-State Transducers in Language and Speech Processing , 1997, CL.

[29]  Björn Borchardt The Myhill-Nerode Theorem for Recognizable Tree Series , 2003, Developments in Language Theory.

[30]  Matt Post,et al.  Weight Pushing and Binarization for Fixed-Grammar Parsing , 2009, IWPT.

[31]  Manfred Droste,et al.  A Weighted MSO Logic with Storage Behaviour and Its Büchi-Elgot-Trakhtenbrot Theorem , 2016, LATA.

[32]  Kevin Knight,et al.  Applications of Weighted Automata in Natural Language Processing , 2009 .

[33]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..