Large strain response in lanthanide-doped potassium sodium niobate-based piezoceramics

[1]  Yunfei Liu,et al.  Enhanced electrical properties of the polymorphic phase boundary on the tetragonal side in K0.48Na0.52NbO3-based lead-free piezoelectric ceramics , 2022, Ceramics International.

[2]  Yunfei Liu,et al.  Enhanced strains of Nb-doped BNKT-4ST piezoelectric ceramics via phase boundary and domain design , 2021 .

[3]  J. Portelles,et al.  Physical properties of the (K0·44Na0·52Li0.04)0.97La0·01Nb0·9Ta0·1O3 ceramic with coexisting tetragonal and orthorhombic monocrystalline grains at room temperature , 2021 .

[4]  Chunlin Zhao,et al.  Superior Electrostrictive Effect in Relaxor Potassium Sodium Niobate Based Ferroelectrics. , 2020, ACS applied materials & interfaces.

[5]  H. Yan,et al.  The Contribution of Electrical Conductivity, Dielectric Permittivity and Domain Switching in Ferroelectric Hysteresis Loops , 2020, Progress in Advanced Dielectrics.

[6]  Yunfei Liu,et al.  Giant strain response with low hysteresis in potassium sodium niobate based lead-free ceramics , 2019, Ceramics International.

[7]  Y. Huan,et al.  Polarization switching and rotation in KNN-based lead-free piezoelectric ceramics near the polymorphic phase boundary , 2019, Journal of the European Ceramic Society.

[8]  Longtu Li,et al.  Grain configuration effect on the phase transition, piezoelectric strain and temperature stability of KNN-based ceramics , 2019, Journal of Materials Chemistry C.

[9]  Wei Li,et al.  Progress in high-strain perovskite piezoelectric ceramics , 2019, Materials Science and Engineering: R: Reports.

[10]  Jingfeng Li,et al.  Critical roles of the rhombohedral-phase inducers in morphotropic NaNbO3-BaTiO3-ABO3 quasi-ternary lead-free piezoelectric ceramics , 2018, Journal of the European Ceramic Society.

[11]  Chunlin Zhao,et al.  Diffused and successive phase transitions of (K, Na)NbO 3 ‐based ceramics with high strain and temperature insensitivity , 2018, Journal of the American Ceramic Society.

[12]  J. Zhai,et al.  Enhanced electromechanical properties of CaZrO3-modified (K0.5Na0.5)NbO3-based lead-free ceramics , 2017 .

[13]  Diego A. Ochoa Guerrero,et al.  Effect of lanthanide doping on structural, microstructural and functional properties of K0.5Na0.5NbO3 lead-free piezoceramics , 2016 .

[14]  Ashok Kumar,et al.  Effect of La-substitution on structural, dielectric and electrical properties of (Bi0.5Pb0.5) (Fe0.5Zr0.25Ti0.25)O3 , 2016, Applied Physics A.

[15]  Jianguo Zhu,et al.  Identification of Phase Boundaries and Electrical Properties in Ternary Potassium-Sodium Niobate-Based Ceramics. , 2016, ACS applied materials & interfaces.

[16]  J. Zhai,et al.  Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics. , 2016, Dalton transactions.

[17]  W. Jo,et al.  Diffused Phase Transition Boosts Thermal Stability of High‐Performance Lead‐Free Piezoelectrics , 2016 .

[18]  X. Tan,et al.  Giant Strains in Non‐Textured (Bi1/2Na1/2)TiO3‐Based Lead‐Free Ceramics , 2016, Advanced materials.

[19]  W. Jo,et al.  Comparison of structural, ferroelectric, and strain properties between A-site donor and acceptor doped Bi1/2(Na0.82K0.18)1/2TiO3 ceramics , 2015 .

[20]  J. Zhai,et al.  Effect of orthorhombic-tetragonal phase transition on structure and piezoelectric properties of KNN-based lead-free ceramics. , 2015, Dalton transactions.

[21]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[22]  D. Sun,et al.  Electric field-induced giant strain and photoluminescence-enhancement effect in rare-earth modified lead-free piezoelectric ceramics. , 2015, ACS applied materials & interfaces.

[23]  Jianguo Zhu,et al.  Potassium–sodium niobate lead-free ceramics: modified strain as well as piezoelectricity , 2015 .

[24]  Fei Li,et al.  Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures , 2014, Progress in Advanced Dielectrics.

[25]  Cheng-Sao Chen,et al.  Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics , 2014 .

[26]  S. J. Milne,et al.  Electrical Properties of Ca-modified Na0.5Bi0.5TiO3–BaTiO3 ceramics , 2014 .

[27]  M. Bafandeh,et al.  Enhanced electric field induced strain in SrTiO3 modified (K,Na)NbO3-based piezoceramics , 2014 .

[28]  Wook Jo,et al.  Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 Lead-Free Incipient Piezoceramic , 2014 .

[29]  Ali Hussain,et al.  Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics , 2014 .

[30]  Fei Li,et al.  Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity , 2014 .

[31]  H. Fan,et al.  Origin of the large strain response in tenary SrTi0.8Zr0.2O3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoceramics , 2014, Journal of Materials Science.

[32]  Doru C. Lupascu,et al.  Temperature‐Insensitive (K,Na)NbO3‐Based Lead‐Free Piezoactuator Ceramics , 2013 .

[33]  I. Kim,et al.  Large strain under a low electric field in lead-free bismuth-based piezoelectrics , 2013 .

[34]  Fei Li,et al.  Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals , 2013 .

[35]  Min-Soo Kim,et al.  Effect of Sintering Time on Strain in Ceramic Composite Consisting of 0.94Bi0.5(Na0.75K0.25)0.5TiO3–0.06BiAlO3 with (Bi0.5Na0.5)TiO3 , 2013 .

[36]  R. Yimnirun,et al.  Lead-free ternary perovskite compounds with large electromechanical strains , 2011 .

[37]  I. Dutta,et al.  Effect of electrical fatigue on the electromechanical behavior and microstructure of strontium modified lead zirconate titanate ceramics , 2010 .

[38]  C. Prakash,et al.  Shape memory effect in PZST system at exact morphotropic phase boundary , 2009 .

[39]  A. M. Lotonov,et al.  Dielectric loss as an indication of the kinetics of the ferroelectric phase transition , 2009 .

[40]  H. Chan,et al.  Microstructure and electrical properties of La-modified K0.5Na0.5NbO3 lead-free piezoelectric ceramics , 2009 .

[41]  Zhuo Xu,et al.  Synthesis, sintering and characterization of PNZST ceramics from high-energy ball milling process , 2008 .

[42]  Li‐Zhu Wu,et al.  Influence of compositional ratio K/Na on physical properties in (KxNa1−x)NbO3 ceramics , 2008 .

[43]  Jingfeng Li,et al.  Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by x-ray diffraction , 2007 .

[44]  Xiaowen Zhang,et al.  Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics , 2007 .

[45]  Thomas R. Shrout,et al.  Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics , 2006 .

[46]  H. Beige,et al.  Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3–SrTiO3 ceramic system , 2005 .

[47]  C. Randall,et al.  Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics , 2005 .

[48]  Xiaobing Ren,et al.  Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching , 2004, Nature materials.

[49]  Yiping Guo,et al.  Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics , 2003 .

[50]  Liang-ying Zhang,et al.  Grain size dependence of dielectric and field-induced strain properties of chemical prepared (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics , 2002 .

[51]  Liang-ying Zhang,et al.  Preparation of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics using colloidal processing and the field induced strain properties , 2001 .

[52]  Yong-jiang Yu,et al.  Effect of composition and temperature on field-induced properties in the lead strontium zirconate titanate system , 2000 .