Electromechanical Transduction in Ionic Liquid-Swollen Nafion Membranes

Abstract Ionomeric polymer transducers (sometimes called “ionic polymer–metal composites,” or “IPMCs”) are a class of electroactive polymers that are able to operate as distributed electromechanical actuators and sensors. Traditionally, these transducers have been fabricated using water-swollen Nafion membranes. This work seeks to overcome the hydration dependence of these transducers by replacing water with an ionic liquid. In the current work, two ionic liquids are studied as diluents for ionomeric polymer transducers based on Nafion membranes. The two ionic liquids used are 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-Im). These two ionic liquids were chosen for their low viscosity and high conductivity. Furthermore, although many of the physical properties of the two ionic liquids are similar, the EMI-Tf ionic liquid is water miscible whereas the EMI-Im ionic liquid is hydrophobic. These important similarities and differences facilitated investigations of the interactions between the ionic liquids and the Nafion polymer. This paper examines the mechanisms of electromechanical transduction in ionic liquid-swollen transducers based on Nafion polymer membranes. Specifically, the morphology and relevant ion associations within these membranes are investigated by the use of small-angle X-ray scattering (SAXS), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. These results reveal that the ionic liquid interacts with the membrane in much the same way that water does, and that the counterions of the Nafion polymer are the primary charge carriers in the ionic liquid-swollen films. The results of these analyses are compared to the macroscopic transduction behavior in order to develop a molecular/morphological model of the charge transport mechanism responsible for electromechanical coupling in these membranes.

[1]  G. Wallace,et al.  Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes , 2003 .

[2]  Yoseph Bar-Cohen,et al.  Flexible low-mass devices and mechanisms actuated by electroactive polymers , 1999, Smart Structures.

[3]  T. Gierke,et al.  Ion transport and clustering in nafion perfluorinated membranes , 1983 .

[4]  Mervyn J Miles,et al.  In situ rehydration of perfluorosulphonate ion-exchange membrane studied by AFM , 2000 .

[5]  D. Leo,et al.  Ionic liquids as stable solvents for ionic polymer transducers , 2004 .

[6]  Edward Moczydlowski,et al.  On the Structural Basis for Size-selective Permeation of Organic Cations through the Voltage-gated Sodium Channel , 1997, The Journal of general physiology.

[7]  Linus Pauling,et al.  THE SIZES OF IONS AND THE STRUCTURE OF IONIC CRYSTALS , 1927 .

[8]  Pierre Millet,et al.  Preparation of solid polymer electrolyte composites: investigation of the precipitation process , 1995 .

[9]  P. Aldebert,et al.  Ionic Conductivity of Bulk, Gels and Solutions of Perfluorinated Ionomer Membranes , 1991 .

[10]  J. G. Murray,et al.  Blood Pressure , 1911, The Indian medical gazette.

[11]  G. Wallace,et al.  Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices , 2002, Science.

[12]  Toshi Takamori,et al.  Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion , 2000, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[13]  Mohsen Shahinpoor,et al.  IONIC POLYMER-CONDUCTOR COMPOSITES (IPCC) AS BIOMIMETIC SENSORS, ACTUATORS AND ARTIFICIAL MUSCLES , 2003 .

[14]  K. Oguro Bending of an Ion-Conducting polymer Film-Electrode Composite by an Electric Stimulus at Low Voltage , 1992 .

[15]  J. Fuller,et al.  Ionic Liquid‐Polymer Gel Electrolytes , 1997 .

[16]  Kazuhiro Kosuge,et al.  Micro catheter system with active guide wire , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[17]  K. Sadeghipour,et al.  Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper , 1992 .

[18]  Kinji Asaka,et al.  Bending of polyelectrolyte membrane platinum composites by electric stimuli. Part II. Response kinetics , 2000 .

[19]  K. Mauritz Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4. Long-range ion transport , 1989 .

[20]  Mohsen Shahinpoor,et al.  Mechanoelectric effects in ionic gels , 2000 .

[21]  K. Winey,et al.  Direct Imaging of Ionic Aggregates in Zn-Neutralized Poly(ethylene-co-methacrylic acid) Copolymers , 1998 .

[22]  Pierre Millet,et al.  Preparation of solid polymer electrolyte composites: investigation of the ion-exchange process , 1995 .

[23]  F. C. Wilson,et al.  The morphology in nafion† perfluorinated membrane products, as determined by wide- and small-angle x-ray studies , 1981 .

[24]  Joshua Mueller Complex Impedance Studies of Electrosprayed and Extruded Nafion Membranes , 2004 .

[25]  A. Garton Infrared Spectroscopy of Polymer Blends, Composites and Surfaces , 1992 .

[26]  A. Katchalsky Rapid swelling and deswelling of reversible gels of polymeric acids by ionization , 1949, Experientia.

[27]  Kazuhiko Matsumoto,et al.  A highly conductive composite electrolyte consisting of polymer and room temperature molten fluorohydrogenates , 2002 .

[28]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[29]  G. Gebel,et al.  Small-Angle Scattering Study of Water-Swollen Perfluorinated Ionomer Membranes , 1997 .

[30]  Barbar J. Akle,et al.  High-strain ionomeric–ionic liquid electroactive actuators , 2006 .

[31]  Shimshon Gottesfeld,et al.  Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes , 1991 .

[32]  Siavouche Nemat-Nasser,et al.  Experimental study of Nafion- and Flemion-based ionic polymer metal composites (IPMCs) with ethylene glycol as solvent , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[33]  G. Wallace,et al.  Use of Ionic Liquids as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers , 2003 .

[34]  Robert B. Moore,et al.  A new multiplet-cluster model for the morphology of random ionomers , 1990 .

[35]  Yoseph Bar-Cohen,et al.  Electroactive polymer (EAP) actuators for planetary applications , 1999, Smart Structures.

[36]  A. Grodzinsky,et al.  Electromechanical Transduction with Charged Polyelectrolyte Membranes , 1976, IEEE Transactions on Biomedical Engineering.

[37]  Kevin M. Farinholt,et al.  Computational models of ionic transport and electromechanical transduction in ionomeric polymer transducers (Invited Paper) , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[38]  H. Yeager,et al.  Ionic diffusion and ion clustering in a perfluorosulfonate ion-exchange membrane , 1979 .

[39]  J. Ceynowa Electron microscopy investigation of ion exchange membranes , 1978 .

[40]  Donald J. Leo,et al.  Bandwidth Characterization in the Micropositioning of Ionic Polymer Actuators , 2005 .

[41]  W. Kuhn,et al.  Reversible Dehnung und Kontraktion bei Änderung der Ionisation eines Netzwerks polyvalenter Fadenmolekülionen , 1949, Experientia.

[42]  K. Newbury,et al.  Characterization, Modeling, and Control of Ionic Polymer Transducers , 2002 .

[43]  B. B. Sauer,et al.  High-Resolution Imaging of Ionic Domains and Crystal Morphology in Ionomers Using AFM Techniques , 2000 .

[44]  W. Kuhn,et al.  Reversible Dilation and Contraction by Changing the State of Ionization of High-Polymer Acid Networks , 1950, Nature.

[45]  A. Grodzinsky,et al.  Electromechanical energy conversion with collagen fibers in an aqueous medium. , 1973, Journal of mechanochemistry & cell motility.

[46]  G. Tourillon,et al.  Precipitation of Metallic Platinum into Nafion Ionomer Membranes I . Experimental Results , 1993 .

[47]  H. Yeager,et al.  Perfluorinated Ionomer Membranes , 1982 .

[48]  W. Ford,et al.  Viscosities and conductivities of the liquid salt triethyl-n-hexylammonium triethyl-n-hexylboride and its benzene solutions , 1976 .

[49]  Thomas C. Farrar,et al.  Pulse and Fourier transform NMR , 1971 .

[50]  S. Lowry,et al.  An investigation of ionic hydration effects in perfluorosulfonate ionomers by Fourier transform infrared spectroscopy , 1980 .

[51]  D. Macfarlane,et al.  A new family of ionic liquids based on the 1-alkyl-2-methyl pyrrolinium cation , 2003 .

[52]  D. Leo,et al.  Correlation of capacitance and actuation in ionomeric polymer transducers , 2005 .

[53]  Mohsen Shahinpoor,et al.  Ion-exchange-metal composite sensor films , 1997, Smart Structures.

[54]  R. Poźniak,et al.  New Ionic Liquids and Their Antielectrostatic Properties , 2001 .

[55]  H. Yeager,et al.  Ionic diffusion and selectivity of a cation exchange membrane in nonaqueous solvents , 1977 .

[56]  R. Hamlen,et al.  Electrolytically Activated Contractile Polymer , 1965, Nature.

[57]  Mohsen Shahinpoor,et al.  Blood pressure, pulse rate, and rhythm measurement using ionic polymer-metal composite sensors , 1999, Smart Structures.

[58]  J. Franklin,et al.  Electromechanical Modeling of Encapsulated Ionic Polymer Transducers , 2003 .

[59]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[60]  S. Cooper,et al.  Morphology of Ionomers , 1973 .

[61]  Shuxiang Guo,et al.  Development of underwater microrobot using ICPF actuator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[62]  Mohsen Shahinpoor,et al.  Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles , 2004 .

[63]  M. Doyle,et al.  High‐Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane‐Ionic Liquid Composites , 2000 .

[64]  D. Segalman,et al.  Theory and application of electrically controlled polymeric gels , 1992 .

[65]  Donald J. Leo,et al.  Feedback Control of the Bending Response of Ionic Polymer Actuators , 2001 .

[66]  A. Derome,et al.  Modern Nmr Techniques for Chemistry Research , 1987 .

[67]  Marc Doyle,et al.  Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties , 2001 .

[68]  Donald J. Leo,et al.  Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[69]  Wu Xu,et al.  Ionic liquids: Ion mobilities, glass temperatures, and fragilities , 2003 .

[70]  Proceedings of the Eighth International Symposium on Molten Salts , 1992 .

[71]  H. Yeager,et al.  Exchange rates and water content of a cation exchange membrane in aprotic solvents , 1976 .

[72]  K. H. Norian,et al.  Analytical electron microscopy of Nafion ion exchange membranes , 1992 .

[73]  Mohsen Shahinpoor,et al.  Force optimization of ionic polymeric platinum composite artificial muscles by means of an orthogonal array manufacturing method , 1999, Smart Structures.

[74]  T. Tsuda,et al.  Acidic 1-ethyl-3-methylimidazolium fluoride: a new room temperature ionic liquid , 1999 .

[75]  H. Yeager,et al.  Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure , 1981 .

[76]  F. H. Hurley,et al.  Electrodeposition of Metals from Fused Quaternary Ammonium Salts , 1951 .

[77]  C. Plesse,et al.  Long-life air working conducting semi-IPN/ionic liquid based actuator , 2004 .

[78]  Toshi Takamori,et al.  An elliptic friction drive element using an ICPF (ionic conducting polymer gel film) actuator , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[79]  P. Trulove,et al.  Physical Properties of Substituted Imidazolium Based Ionic Liquids Gel Electrolytes , 2002 .

[80]  New, Stable, Ambient-Temperature Molten Salts , 1992 .

[81]  S. Hanna,et al.  Hydration of Nafion® studied by AFM and X-ray scattering , 2000 .

[82]  R. Duplessix,et al.  Small‐angle scattering studies of nafion membranes , 1981 .

[83]  C. Heitner-Wirguin,et al.  Infra-red spectra of perfluorinated cation-exchanged membranes , 1979 .

[84]  K. Winey,et al.  Ionic aggregates in partially Zn-neutralized poly(ethylene-ran-methacrylic acid) ionomers : Shape, size, and size distribution , 2000 .

[85]  S. Hanna,et al.  Interpretation of the Small-Angle X-ray Scattering from Swollen and Oriented Perfluorinated Ionomer Membranes , 2000 .

[86]  Ze'ev Porat,et al.  Electron Microscopy Investigation of the Microstructure of Nafion Films , 1995 .

[87]  R. Stein,et al.  Structure of the Cesium Salt of an Ethylene-Methacrylic Acid Copolymer from Its Radial Distribution Function , 1974 .

[88]  R. Hagiwara,et al.  Room temperature ionic liquids of alkylimidazolium cations and fluoroanions , 2000 .

[89]  Donald J. Leo,et al.  Ionic liquids as novel solvents for ionic polymer transducers , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[90]  Shimshon Gottesfeld,et al.  Electro-osmotic Drag of Water in Poly(perfluorosulfonic acid) Membranes , 2001 .

[91]  G. Gebel,et al.  Swelling study of perfluorosulphonated ionomer membranes , 1993 .

[92]  M. Grätzel,et al.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. , 1996, Inorganic chemistry.

[93]  A. Lehmani,et al.  Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope , 1998 .

[94]  Donald J. Leo,et al.  Manufacture and characterization of ionic polymer transducers employing non-precious metal electrodes , 2003 .

[95]  F. Segal,et al.  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.

[96]  R. Komoroski,et al.  A sodium-23 nuclear magnetic resonance study of ionic mobility and contact ion pairing in a perfluorosulfonate ionomer , 1978 .

[97]  R. Puetter,et al.  Deconvolution of scanning transmission electron microscopy images of ionomers , 2003 .

[98]  Robert B. Moore,et al.  Effects of Hydrophilic and Hydrophobic Counterions on the Coulombic Interactions in Perfluorosulfonate Ionomers , 1995 .

[99]  E. Schmidt,et al.  Structure reorganization in polymer films of nafion due to swelling studied by scanning force microscopy , 1994 .

[100]  Q. Nguyen,et al.  Infrared investigations of sulfonated ionomer membranes. I. Water–alcohol compositions and counterions effects , 1992 .

[101]  Michael Falk,et al.  An infrared study of water in perfluorosulfonate (Nafion) membranes , 1980 .

[102]  Yoseph Bar-Cohen,et al.  Electroactive polymers (EAP) charaterization methods , 2000, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[103]  N. Lakshminarayanaiah,et al.  Transport phenomena in membranes , 1969 .

[104]  P. Meakin,et al.  Ion Percolation and Insulator-to-Conductor Transition in Nafion Perfluorosulfonic Acid Membranes , 1980 .

[105]  G. Wallace,et al.  Conducting polymer electrochemistry in ionic liquids , 2003 .

[106]  R. Noble,et al.  Morphological changes and facilitated transport characteristics for nafion membranes of various equivalent weights , 1996 .

[107]  F. Beyer,et al.  A comparative study of the structure–property behavior of highly branched segmented poly(urethane urea) copolymers and their linear analogs , 2005 .

[108]  Kevin M. Farinholt,et al.  Modeling of electromechanical charge sensing in ionic polymer transducers , 2004 .

[109]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[110]  R. Tannenbaum,et al.  Fourier transform infrared studies of ionic interactions in perfluorinated acid copolymer blends , 2003 .

[111]  O. Diat,et al.  Transport anisotropy of ions in sulfonated polyimide ionomer membranes , 2004 .

[112]  M. Urban Attenuated total reflectance spectroscopy of polymers : theory and practice , 1996 .

[113]  Alan Jay Grodzinsky Electromechanics of deformable polyelectrolyte membranes. , 1974 .

[114]  Editors , 1986, Brain Research Bulletin.

[115]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[116]  S. Hanna,et al.  A model-independent maximum-entropy method for the inversion of small-angle X-ray diffraction patterns , 1999 .