StreamEB: Stream Edge Bundling

Graph streams have been studied extensively, such as for data mining, while fairly limitedly for visualizations. Recently, edge bundling promises to reduce visual clutter in large graph visualizations, though mainly focusing on static graphs. This paper presents a new framework, namely StreamEB, for edge bundling of graph streams, which integrates temporal, neighbourhood, data-driven and spatial compatibility for edges. Amongst these metrics, temporal and neighbourhood compatibility are introduced for the first time. We then present force-directed and tree-based methods for stream edge bundling. The effectiveness of our framework is then demonstrated using US flights data and Thompson-Reuters stock data.

[1]  Chen Wang,et al.  Dynamic network visualization in 1.5D , 2011, 2011 IEEE Pacific Visualization Symposium.

[2]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[3]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[4]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[5]  Ulrik Brandes,et al.  A Bayesian Paradigm for Dynamic Graph Layout , 1997, GD.

[6]  Sudipto Guha,et al.  Streaming-data algorithms for high-quality clustering , 2002, Proceedings 18th International Conference on Data Engineering.

[7]  Romain Bourqui,et al.  Winding Roads: Routing edges into bundles , 2010, Comput. Graph. Forum.

[8]  Yifan Hu,et al.  Multilevel agglomerative edge bundling for visualizing large graphs , 2011, 2011 IEEE Pacific Visualization Symposium.

[9]  Jennifer Widom,et al.  The CQL continuous query language: semantic foundations and query execution , 2006, The VLDB Journal.

[10]  Christophe Hurter,et al.  Skeleton-Based Edge Bundling for Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[11]  Peter Eades,et al.  On-line Animated Visualization of Huge Graphs using a Modified Spring Algorithm , 1998, J. Vis. Lang. Comput..

[12]  Peter Eades,et al.  TGI-EB: A New Framework for Edge Bundling Integrating Topology, Geometry and Importance , 2011, Graph Drawing.

[13]  Ulrik Brandes,et al.  Drawing trees in a streaming model , 2009, Inf. Process. Lett..

[14]  Jeffrey Heer,et al.  Divided Edge Bundling for Directional Network Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[15]  Charu C. Aggarwal,et al.  Managing and Mining Graph Data , 2010, Managing and Mining Graph Data.

[16]  Henrique Andrade,et al.  Visualizing Large-Scale Streaming Applications , 2009, Inf. Vis..

[17]  Peter Eades,et al.  FADE: Graph Drawing, Clustering, and Visual Abstraction , 2000, GD.

[18]  Yehuda Koren,et al.  Improved Circular Layouts , 2006, GD.

[19]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[20]  Irene Finocchi,et al.  Graph sketches , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[21]  Sudipto Guha,et al.  Approximation and streaming algorithms for histogram construction problems , 2006, TODS.

[22]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[23]  Ulrik Brandes,et al.  Drawing Trees in a Streaming Model , 2009, Graph Drawing.

[24]  Ulrik Brandes,et al.  A Quantitative Comparison of Stress-Minimization Approaches for Offline Dynamic Graph Drawing , 2011, GD.

[25]  M. Sheelagh T. Carpendale,et al.  Edgelens: an interactive method for managing edge congestion in graphs , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[26]  Mudita Singhal,et al.  Visual Analysis of Dynamic Data Streams , 2009, Inf. Vis..

[27]  Joan Feigenbaum,et al.  Graph distances in the streaming model: the value of space , 2005, SODA '05.

[28]  Daniele Braga,et al.  Querying RDF streams with C-SPARQL , 2010, SGMD.

[29]  Ziv Bar-Yossef,et al.  Reductions in streaming algorithms, with an application to counting triangles in graphs , 2002, SODA '02.

[30]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[31]  Hong Zhou,et al.  Energy-Based Hierarchical Edge Clustering of Graphs , 2008, 2008 IEEE Pacific Visualization Symposium.

[32]  Tim Dwyer,et al.  GEOMI: GEOmetry for Maximum Insight , 2005, GD.

[33]  Wolfgang Kienreich,et al.  An Application of Edge Bundling Techniques to the Visualization of Media Analysis Results , 2010, 2010 14th International Conference Information Visualisation.

[34]  Philip S. Yu,et al.  GraphScope: parameter-free mining of large time-evolving graphs , 2007, KDD '07.

[35]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[36]  Armand Navabi,et al.  Journal of Graph Algorithms and Applications Simultaneous Graph Drawing: Layout Algorithms and Visualization Schemes , 2022 .

[37]  Hong Zhou,et al.  Geometry-Based Edge Clustering for Graph Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[38]  Peter Eades,et al.  A Heuristics for Graph Drawing , 1984 .

[39]  W. Marsden I and J , 2012 .

[40]  Daniel A. McFarland,et al.  Dynamic Network Visualization1 , 2005, American Journal of Sociology.